数学建模系列-预测模型(一)灰色预测模型

这篇具有很好参考价值的文章主要介绍了数学建模系列-预测模型(一)灰色预测模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1 灰色预测模型

1.1 灰色系统的定义与特点

1.2 灰色预测模型优缺点

1.3 灰色生成数列

1.4 灰色模型GM(1,1)实操步骤

1 数据检验

2 构建灰色模型

3 检验预测值

4 灰色预测模型实例代码


目前我们学习预测模型的第一类:灰色预测模型

1 灰色预测模型

        Gray Forecast Model 是通过少量的、不完全的信息,建立数学模型并给出预测的一种预测方法。

        目前常用的一些预测方法(如回归分析等),需要较大的样本。若样本较小,则会造成较大误差,使预测目标失效。

        灰色预测模型所需建模信息少,运算方便,建模精度高,在各种预测领域都有着广泛的应用,是处理小样本预测问题的有效工具.

1.1 灰色系统的定义与特点

        灰色系统是黑箱概念的一种推广。我们把既含有已知信息又含有未知信息的系统称为灰色系统。

        (1)用灰色数学处理处理不确定量,使之量化

        (2)充分利用已知信息寻求系统的运动规律

        (3)灰色系统理论能处理贫信息系统

1.2 灰色预测模型优缺点

        适用范围:该模型使用的不是原始数据的序列, 而是生成的数据序列。 核心体系是 Grey Model, 即对原始数据作累加生成(或其他处理生成) 得到近似的指数规律再进行建模的方法。
       

        优点:在处理较少的特征值数据, 不需要数据的样本空间足够大, 就能解决历史数据少、 序列的完整性以及可靠性低的问题, 能将无规律的原始数据进行生成得到规律较强的生成序列

        缺点:只适用于中短期的预测, 只适合近似于指数增长的预测。需要构建一阶常微分方程来求解拟合函数的函数表达式。

1.3 灰色生成数列

        关键在于如何选择合适的方式去挖掘和利用事物的内在规律。一切灰色序列都能通过某种生成弱化其随机性,显现其规律。数据生成的常用方式有累加生成、累减生成和加权累加生成

(1)累加生成(AGO)

        设原始数列为x_0=[x_0(1),x_0(2).....x_0(n)],则x_1(k)=x_0(1)+x_0(2)+......+x_0(n)为原始数列的1次累加生成数列。

数学建模系列-预测模型(一)灰色预测模型

         称为x_0的r次累加生成数列。

(2)累减生成(IAGO)

        设原始数列为x_1=[x_1(1),x_1(2).....x_1(n)],则x_0(k)=x_1(1)+x_1(2)+......+x_1(n)是原始数列的1次累减生成数列。通过累加数列得到的数列可以通过累减生成还原成原始数列。

(3)加权邻值生成

        设原始数列为x_1=[x_1(1),x_1(2).....x_1(n)],称任意一对相邻元素x_0(k-1),x_0(k)互为邻值。对于常数0<a<1,则

数学建模系列-预测模型(一)灰色预测模型

         由此得到的数列称为邻值生成数,权a称为生成系数。当a=0.5时,则称数列为均值生成数。

1.4 灰色模型GM(1,1)实操步骤

1 数据检验

        建模前需要对数据进行检验,首先计算数列的级比

数学建模系列-预测模型(一)灰色预测模型

        如果所有的级比都落在可容覆盖区间

数学建模系列-预测模型(一)灰色预测模型

        则数列可以进行灰色预测,否则需要对数据进行适当的变换处理,如平移等。

数学建模系列-预测模型(一)灰色预测模型

以下为数据检验的matlab代码: 

%数据检验
function [G, params] = GM(A)
% G为预测数据,Q为相对残差Q检验,C为方差比C检验
% p为小误差概率p检验

%建立符号变量a(发展系数)和b(灰作用量)
% syms a b;
% c = [a u]';
n = length(A);
%% 级比检验
% 对原始数列 A 做累加得到数列 B
B = cumsum(A);

% 计算级比和光滑比
sig = zeros(1,n);
rho = zeros(1,n);
for i = 2:n
    sig(i) = B(i)/B(i-1);
    rho(i) = A(i)/B(i-1);
end

if sum(sig(4:end) >=2 ) == 0 && sum(rho(5:end) >= 0.5) == 0
    disp('数据满足光滑条件和指数规律')
else
    disp('数据不满足光滑条件和指数规律')
end

2 构建灰色模型

        定义x_1的灰导数为

数学建模系列-预测模型(一)灰色预测模型

         令z_1(k)为数列x_1的邻值生成数列,即

数学建模系列-预测模型(一)灰色预测模型

         于是定义GM(1,1)的微分方程模型为

数学建模系列-预测模型(一)灰色预测模型

         用回归分析求得a、b的估计值,于是相应的白化模型为

数学建模系列-预测模型(一)灰色预测模型

         解为

数学建模系列-预测模型(一)灰色预测模型

         于是得到预测值

数学建模系列-预测模型(一)灰色预测模型

数学建模系列-预测模型(一)灰色预测模型

 实操:

        将k=1,2,3,,,n代入式子中得:

数学建模系列-预测模型(一)灰色预测模型

         引入矩阵向量记号

数学建模系列-预测模型(一)灰色预测模型

         于是GM(1,1)模型可表示为Y=Bu。

        那么现在的问题是求a和b的问题,我们可以用一元线性回归,也就是最小二乘法求他们的估计值为:

数学建模系列-预测模型(一)灰色预测模型

 以下是matlab代码:

%% 数据预测
% 对数列 B 做紧邻均值生成
C = zeros(n,1);
for i = 2:n
    C(i) = (B(i) + B(i - 1))/2;  
end
C(1) = [];

% 构造数据矩阵 
B = [-C,ones(n-1,1)];
Y = A; Y(1) = []; 

% 使用最小二乘法计算参数 a(发展灰数)和b(内控制灰数)
c = inv(B'*B)*B'*Y;
a = c(1);
u = c(2);

% 预测后续数据
F(1) = A(1);
for i = 2:n+2    % 预测两年的数据
    F(i) = (A(1)-u/a)/exp(a*(i-1))+ u/a;
end

% 对数列 F 累减还原,得到预测出的数据
G(1) = A(1);
for i = 2:n+2  
    G(i) = F(i) - F(i-1); %得到预测出来的数据
end
G = G';

3 检验预测值

        (一)残差检验:计算相对误差

数学建模系列-预测模型(一)灰色预测模型

        如果所有得相对误差都小于0.1,则认为达到较高的要求。小于0.2,则达到一般要求。

        (二)关联度检验

        (三)方差比C检验

        (四)小误差概率p检验

以下为matlab代码:

%% 精度检验
H = G(1:n);
% 计算残差序列
epsilon = A - H;

% 法一:相对残差Q检验(MAPE)
% 计算相对残差
delta = abs(epsilon./A);
% 计算相对误差平均值Q
Q = mean(delta);
% 计算所对应的的绝对误差百分比
MAPE = abs(sum(epsilon./A)/(n-1))*100;

% 法二:关联度检验
r = sum((min(min(abs(epsilon)))+0.5*max(max(abs(epsilon))))./(abs(epsilon)+0.5*max(max(abs(epsilon)))))/n;

% 法三:方差比C检验
C = std(epsilon, 1)/std(A, 1);

% 法四:小误差概率P检验
S1 = std(A, 1);
tmp = find(abs(epsilon - mean(epsilon))< 0.6745 * S1);
P = length(tmp)/n;

params = [a,u,r,C,P,MAPE];
end

4 灰色预测模型实例代码

原始数据:A=[71.1 72.4 72.4 72.1 71.4 72.0 71.6]'文章来源地址https://www.toymoban.com/news/detail-433032.html

function [G, params] = GM(A)
% G为预测数据,Q为相对残差Q检验,C为方差比C检验
% p为小误差概率p检验

%建立符号变量a(发展系数)和b(灰作用量)
% syms a b;
% c = [a u]';
n = length(A);
%% 级比检验
% 对原始数列 A 做累加得到数列 B
B = cumsum(A);

% 计算级比和光滑比
sig = zeros(1,n);
rho = zeros(1,n);
for i = 2:n
    sig(i) = B(i)/B(i-1);
    rho(i) = A(i)/B(i-1);
end

if sum(sig(4:end) >=2 ) == 0 && sum(rho(5:end) >= 0.5) == 0
    disp('数据满足光滑条件和指数规律')
else
    disp('数据不满足光滑条件和指数规律')
end

%% 数据预测
% 对数列 B 做紧邻均值生成
C = zeros(n,1);
for i = 2:n
    C(i) = (B(i) + B(i - 1))/2;  
end
C(1) = [];

% 构造数据矩阵 
B = [-C,ones(n-1,1)];
Y = A; Y(1) = []; 

% 使用最小二乘法计算参数 a(发展灰数)和b(内控制灰数)
c = inv(B'*B)*B'*Y;
a = c(1);
u = c(2);

% 预测后续数据
F(1) = A(1);
for i = 2:n+2    % 预测两年的数据
    F(i) = (A(1)-u/a)/exp(a*(i-1))+ u/a;
end

% 对数列 F 累减还原,得到预测出的数据
G(1) = A(1);
for i = 2:n+2  
    G(i) = F(i) - F(i-1); %得到预测出来的数据
end
G = G';

%% 精度检验
H = G(1:n);
% 计算残差序列
epsilon = A - H;

% 法一:相对残差Q检验(MAPE)
% 计算相对残差
delta = abs(epsilon./A);
% 计算相对误差平均值Q
Q = mean(delta);
% 计算所对应的的绝对误差百分比
MAPE = abs(sum(epsilon./A)/(n-1))*100;

% 法二:关联度检验
r = sum((min(min(abs(epsilon)))+0.5*max(max(abs(epsilon))))./(abs(epsilon)+0.5*max(max(abs(epsilon)))))/n;

% 法三:方差比C检验
C = std(epsilon, 1)/std(A, 1);

% 法四:小误差概率P检验
S1 = std(A, 1);
tmp = find(abs(epsilon - mean(epsilon))< 0.6745 * S1);
P = length(tmp)/n;

params = [a,u,r,C,P,MAPE];
end

到了这里,关于数学建模系列-预测模型(一)灰色预测模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 数学建模常用模型(一):灰色预测法

    数学建模常用模型(一):灰色预测法

    灰色预测法是一种用于处理少量数据、数据质量较差或者缺乏历史数据的预测方法。它适用于一些非线性、非平稳的系统,尤其在短期预测和趋势分析方面有着广泛的应用。灰色预测法作为一种强大的数学建模工具,通过利用有限的信息,能够在不完备的条件下进行准确的预

    2024年02月09日
    浏览(11)
  • 数学建模之灰色预测模型代码(matlab版)

    灰色关联分析步骤 【1】确定比较对象(评价对象)(就是数据,并且需要进行规范化处理,就是标准化处理,见下面例题的表格数据)和参考数列(评价标准,一般该列数列都是1,就是最优的的情况) 【2】确定各个指标权重,可用层次分析确定 【3】计算灰色关联系数 【4】

    2024年02月09日
    浏览(15)
  • 【数学建模-灰色关联分析与灰色预测】

    【数学建模-灰色关联分析与灰色预测】

    目录 一.灰色关联度简介 二.灰色关联度 ​灰色关联分析案例 三.灰色预测模型简介 四.灰色预测之灰色生成数列 累加生成 累减生成 加权邻值生成 五.灰色模型GM(1,1) GM(1,1)灰色预测的步骤 1.数据的检验与处理 2.建立GM(1,1)模型 3. 检验预测值  六.灰色预测案例 灰色

    2024年02月20日
    浏览(8)
  • 【数学建模】灰色预测法

    【数学建模】灰色预测法

    灰色预测对原始数据进行生成处理来寻找系统变动的规律,并生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。 灰色预测是一种对含有 不确定因素 的系统进行预测的方法。 灰色预测通过鉴别系统因素之间发展趋势的相异程度

    2023年04月15日
    浏览(14)
  • 数学建模之灰色预测

    灰色预测(Grey Forecasting)是一种用于时间序列数据分析和预测的方法,通常用于处理具有 较少历史数据 的情况或者数据不够充分的情况。它是一种非常简单但有效的方法,基于灰色系统理论,用来估计未来的趋势。 以下是灰色预测的基本思想和步骤: 建立灰色模型 :首先

    2024年02月11日
    浏览(5)
  • 数学建模-灰色预测

    数学建模-灰色预测

    灰色预测 1.1白色系统VS黑色系统         白色系统:系统内部的特征是完全已知的         黑色系统相反 1.2灰色系统         部分已知,部分未知 1.3 灰色预测         定义:对含有不确定因素的系统进行预测的方法。         灰色时间序列预测:用观察到的

    2024年02月12日
    浏览(10)
  • 数学建模之灰色预测方法

    数学建模之灰色预测方法

    关联系数 计算关联系数公式 步骤 第一步 第二步 求参考数列和待比较数列矩阵数值做差之后的最小值和最大值 第三步利用公式计算关联度系数,其中将最大值最小值耦合到关联系数中,可以保证关联系数位于[0,1]之间,同时上下对称的结构可以消除量纲不同和数值量级悬殊

    2024年02月13日
    浏览(9)
  • 数学建模系列-预测模型(三)时间序列预测模型

    数学建模系列-预测模型(三)时间序列预测模型

    目录 前言 1 时间序列定义 1.1 朴素法 1.2 简单平均法 1.3 移动平均法 1.4 指数平滑法 1.4.1 一次指数平滑  1.4.2 二次指数平滑 1.4.3 三次指数平滑 1.5 AR模型 1.6 MA模型 1.7 ARMA模型 1.8 ARIMA模型 1.9 SARIMA模型         时间序列的目的:进行预测, 根据已有的时间序列数据预测未来

    2024年02月07日
    浏览(7)
  • 数学建模系列-预测模型(四)马尔可夫预测

    数学建模系列-预测模型(四)马尔可夫预测

    目录 1 Markov模型含义 2 模型分析 3 应用题型  3.1 问题分析 3.2 模型建立 4 Markov模型优缺点         马尔可夫(Markov)预测法,就是一种关于事件发生的概率预测方法。它是根据事件的目前状况来预测其将来各个时刻(或时期)变动状况的一种预测方法。马尔可夫预测法是地

    2024年02月07日
    浏览(8)
  • 数学建模 | 灰色预测原理及python实现

    数学建模 | 灰色预测原理及python实现

    目录 一、灰色预测的原理 二、灰色预测的应用及python实现 灰色预测是以灰色模型为基础,灰色模型GM(n,h)是微分方程模型,可用于描述对象做 长期、连续、动态 的反应。其中,n代表微分方程式的阶数,h代表微分方程式的变化数目。在诸多的灰色模型中,以灰色系统中 单序

    2024年01月16日
    浏览(11)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包