微服务分布式搜索引擎 ElasticSearch 搜索结果处理 排序、分页与高亮

这篇具有很好参考价值的文章主要介绍了微服务分布式搜索引擎 ElasticSearch 搜索结果处理 排序、分页与高亮。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

⛄引言

本文参考黑马 分布式Elastic search
Elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容

搜索结果处理

搜索的结果可以按照用户指定的方式去处理或展示。

一、排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

⛅普通字段排序

keyword、数值、日期类型排序的语法基本一致。

语法

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "FIELD": "desc"  // 排序字段、排序方式ASC、DESC
    }
  ]
}

排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推

示例

需求描述:酒店数据按照用户评价(score)降序排序,评价相同的按照价格(price)升序排序

微服务分布式搜索引擎 ElasticSearch 搜索结果处理 排序、分页与高亮

⚡地理坐标排序

地理坐标排序略有不同。

语法说明:

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "_geo_distance" : {
          "FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点
          "order" : "asc", // 排序方式
          "unit" : "km" // 排序的距离单位
      }
    }
  ]
}

这个查询的含义是:

  • 指定一个坐标,作为目标点
  • 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少
  • 根据距离排序

示例:

需求描述:实现对酒店数据按照到你的位置坐标的距离升序排序

提示:获取你的位置的经纬度的方式:https://lbs.amap.com/demo/jsapi-v2/example/map/click-to-get-lnglat/

假设我的位置是:22.537148, 114.051375 寻找我周围距离最近的酒店。

微服务分布式搜索引擎 ElasticSearch 搜索结果处理 排序、分页与高亮

二、分页

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:

  • from:从第几个文档开始
  • size:总共查询几个文档

类似于mysql中的limit ?, ?

⌚基本分页

分页的基本语法如下:

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

执行查询结果

微服务分布式搜索引擎 ElasticSearch 搜索结果处理 排序、分页与高亮

⏰深度分页

现在,我要查询990~1000的数据,查询逻辑要这么写:

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 990, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

这里是查询990开始的数据,也就是 第990~第1000条 数据。

不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条:

微服务分布式搜索引擎 ElasticSearch 搜索结果处理 排序、分页与高亮

查询TOP1000,如果es是单点模式,这并无太大影响。

但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了。

因为节点A的TOP200,在另一个节点可能排到10000名以外了。

因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000。

微服务分布式搜索引擎 ElasticSearch 搜索结果处理 排序、分页与高亮

那如果我要查询9900~10000的数据呢?是不是要先查询TOP10000呢?那每个节点都要查询10000条?汇总到内存中?

当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。

针对深度分页,ES提供了两种解决方案,官方文档:

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
  • scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。

分页小结

分页查询的常见实现方案以及优缺点:

  • from + size

    • 优点:支持随机翻页
    • 缺点:深度分页问题,默认查询上限(from + size)是10000
    • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索
  • after search

    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:只能向后逐页查询,不支持随机翻页
    • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页
  • scroll

    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:会有额外内存消耗,并且搜索结果是非实时的
    • 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。

三、高亮

什么是高亮显示呢?

我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:

微服务分布式搜索引擎 ElasticSearch 搜索结果处理 排序、分页与高亮

高亮显示的实现分为两步:

  • 1)给文档中的所有关键字都添加一个标签,例如<em>标签
  • 2)页面给<em>标签编写CSS样式

⚡实现高亮

高亮的语法:

GET /hotel/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询
    }
  },
  "highlight": {
    "fields": { // 指定要高亮的字段
      "FIELD": {
        "pre_tags": "<em>",  // 用来标记高亮字段的前置标签
        "post_tags": "</em>" // 用来标记高亮字段的后置标签
      }
    }
  }
}

注意:

  • 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
  • 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
  • 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false

搜索结果

微服务分布式搜索引擎 ElasticSearch 搜索结果处理 排序、分页与高亮

高亮小结

查询的DSL是一个大的JSON对象,包含下列属性:

  • query:查询条件
  • from和size:分页条件
  • sort:排序条件
  • highlight:高亮条件

示例:

微服务分布式搜索引擎 ElasticSearch 搜索结果处理 排序、分页与高亮

⛵小结

以上就是【Bug 终结者】对 微服务分布式搜索引擎 Elastic Search RestClient 操作文档 的简单介绍,ES搜索引擎无疑是最优秀的分布式搜索引擎,使用它,可大大提高项目的灵活、高效性! 技术改变世界!!!

如果这篇【文章】有帮助到你,希望可以给【Bug 终结者】点个赞👍,创作不易,如果有对【后端技术】、【前端领域】感兴趣的小可爱,也欢迎关注❤️❤️❤️ 【Bug 终结者】❤️❤️❤️,我将会给你带来巨大的【收获与惊喜】💝💝💝!文章来源地址https://www.toymoban.com/news/detail-433316.html

到了这里,关于微服务分布式搜索引擎 ElasticSearch 搜索结果处理 排序、分页与高亮的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分布式搜索引擎ElasticSearch——搜索功能

    DSL查询分类 DSL官方文档 全文检索查询 精确查询 地理查询 复合查询 Function Score Query function score query Boolean Query 排序 分页 官方文档 高亮 快速入门 match,term,range,bool查询 排序和分页 高亮显示 就是在前面抽取的解析代码中进一步添加关于高亮的解析部分,因为highlight和so

    2024年02月01日
    浏览(54)
  • 分布式搜索引擎——elasticsearch搜索功能

    Elasticsearch提供了基于JSON的DSL (Domain Specific Language)来定义查询。常见的查询类型包括: 查询所有:查询出所有数据,一般测试用。例如:match_all 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如: match_query multi_match_query 精确查询:根据精确词条

    2024年02月05日
    浏览(67)
  • 微服务04 分布式搜索引擎 elasticsearch DSL数据聚合 自动补全 数据同步 集群 微服务保护 Sentinel

    聚合(aggregations)可以让我们极其 方便的实现对数据的统计、分析、运算 。例如: 什么品牌的手机最受欢迎? 这些手机的平均价格、最高价格、最低价格? 这些手机每月的销售情况如何? 实现这些 统计功能的比数据库的sql要方便的多,而且查询速度非常快 ,可以实现近

    2024年02月15日
    浏览(56)
  • ElasticSearch分布式搜索引擎

    KuangStudy ElasticSearch学习视频:狂神说ElasticSearch教程 1、官网 Elaticsearch ,简称为es,es是一个开源的 高扩展 的 分布式全文检索引擎 ,它可以近乎 实时的存储 、 检索数据; 本身扩展性很好,可以扩展到上百台服务器,处理PB级别(大数据时代)的数据。es也使用java开发并使用

    2024年02月16日
    浏览(47)
  • 【分布式搜索引擎elasticsearch】

    什么是elasticsearch? 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能 什么是elastic stack(ELK)? 是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在

    2024年02月10日
    浏览(51)
  • 分布式搜索引擎----elasticsearch

    目录 1、初识elasticsearch 1.1、什么是elasticsearch 1.2.ELK技术栈 2、正向索引和倒排索引 2.1、正向索引 2.2、倒排索引 2.3、正向索引和倒排索引的区别 3、elasticsearch中的概念理解 3.1、文档和字段 3.2、索引和映射 3.3、mysql与elasticsearch         elasticsearch是一款非常强大的开源搜索

    2024年02月11日
    浏览(54)
  • 分布式搜索引擎elasticsearch(一)

    elasticsearch是一款非常强大的开源搜索引擎,可以帮助我们从海量数据中快速找到需要的内容。 elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。 文档(document):每条数据就是一个文档 词条(term):文档按照语义分成的词语 倒排索引中包含两部分内容: 词条词

    2024年02月02日
    浏览(95)
  • 分布式搜索引擎ElasticSearch——基础

    什么是elasticsearch elasticsearch的发展 https://lucene.apache.org/ https://www.elastic.co/cn/ 正向索引和倒排索引 安装elasticsearch,kibana https://github.com/medcl/elasticsearch-analysis-ik 部署单点es 创建网络 因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络: 加载镜像

    2024年01月17日
    浏览(43)
  • 分布式搜索引擎-elasticsearch基础

    elasticsearch是一款非常强大的开源搜索引擎,可以帮助我们从海量数据中快速找到需要的内容。 elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在 日志数据分析 、 实时监控 等领域。 elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。 Lucen

    2024年03月20日
    浏览(58)
  • # 分布式搜索引擎-- elasticsearch基础

    elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容,,可以用来实现搜索、日志统计、分析、系统监控等功能    是以elasticsearch为核心的技术栈,都包括: ElasticSearch(存储,计算,搜索数据) kibana(数据可视化) Logstas

    2024年03月27日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包