U-net网络详解

这篇具有很好参考价值的文章主要介绍了U-net网络详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

论文地址:https://arxiv.org/abs/1505.04597

学习视频:U-Net网络结构讲解(语义分割)_哔哩哔哩_bilibili

整体结构

如下图,U-net结构为Encoder-Decoder,左边为Encoder部分,作用是下采样,右边为Decoder部分,作用为上采样

在图中每一个长条代表一个特征层,每一个箭头对应于一种操作

U-net网络详解

Encoder部分也即下采样部分

第一步

如下图,来看左边部分第一层,蓝色箭头代表卷积层,卷积核大小为3*3,padding = 0,步长为1,经过两层卷积层大小每经过一层减小2,高和宽变成了568*568通道大小变成了64

U-net网络详解

之后经过红色箭头,表示最大池化层,大小缩小为一半为284*284

第二步

此时再进行2次卷积,将channel翻倍,如下图得到280*280*128的特征图

U-net网络详解

然后再经过一个最大池化层得到128*128

第三步

对上面280*280的特征图继续进行卷积,得到136*136*256,如下图

U-net网络详解

再经过最大池化层得到68*68的特征图

第四步

对68*68*256的特征图继续进行卷积操作得到64*64*512的特征图,如下

U-net网络详解

再经过最大池化层得到32*32的特征图

第五步

对32*32*512的特征层进行卷积得到28*28*1024的特征层

U-net网络详解

Decoder部分也即上采样部分

至此下采样结束接下来是上采样,这里上采样使用的是转置卷积

第一步

图中绿色箭头代表上采样,每一次上采样会将高和宽扩大两倍,通道数减半,变成56*56*512,同时灰色箭头表示将左边对应部分的特征图进行中心裁剪出一块与右边一样大小,与右边进行拼接,得到56*56*1024的特征图,然后经过3*3大小的卷积,将特征图通道数减半,同时会继续缩小高和宽为52*52,最终经过这一步的decoder得到52*52*512大小的特征图

U-net网络详解

接下来进行转置卷积将特征图大小调整为104*104*256

第二步

此时与刚刚上采样的第一步类似,对左边部分进行中心裁剪拼接得到104*104*512,如图,再进行两层卷积操作得到100*100*256的特征图

U-net网络详解

接下来进行转置卷积将特征图大小调整为200*200*128

第三步

此时与刚刚上采样的第二步类似,对左边部分进行中心裁剪拼接得到200*200*256,如图,再进行两层卷积操作得到196*196*128的特征图

U-net网络详解

接下来继续上采样,使用转置卷积得到392*392*64大小的特征图

第四步

此时与刚刚上采样的第三步类似,对对应左边部分进行中心裁剪拼接得到392*392*128,如图,再进行两层卷积操作得到388*388*64的特征图,如图

U-net网络详解

最后进行一个1*1的卷积操作,原论文只有两个类别一个背景一个是要分割的物体,卷积核个数因此为2,最终得到的输出是388*388*2的分割图

实际U-net网络

可以看到在原文中,输入和输出大小不一样

U-net网络详解

如图对于这个细胞分割,实际上要黄色部分的分割图要用到蓝色框区域的信息,但是在图像边缘往往是没有这些信息,这时图像边缘信息缺失了,这时需要镜像对应部分补全缺失信息,才能进行分割。而且对于大分辨率的图像分割时,往往分割时要有overlap部分,如下图。

U-net网络详解

然而,事实上,当今主流U-net网络在卷积的时候会有padding,来保证输入特征图大小与输出特征图大小一样,这样就不需要考虑边缘缺失问题了。文章来源地址https://www.toymoban.com/news/detail-433329.html

到了这里,关于U-net网络详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • U-net网络学习记录

    本质上是一个用于图像分割的神经网络 输入是一幅图,输出是目标的分割结果。继续简化就是,一幅图,编码,或者说降采样,然后解码,也就是升采样,然后输出一个分割结果。根据结果和真实分割的差异,反向传播来训练这个分割网络 既然输入和输出都是相同大小的图

    2024年02月09日
    浏览(36)
  • 论文阅读笔记——SMU-Net:面向缺失模态脑肿瘤分割的样式匹配U-Net

    论文地址:https://arxiv.org/abs/2204.02961v1 脑胶质瘤:https://baike.baidu.com/item/%E8%84%91%E8%83%B6%E8%B4%A8%E7%98%A4/7242862 互信息:https://zhuanlan.zhihu.com/p/240676850 Gram矩阵:https://zhuanlan.zhihu.com/p/187345192 背景: 绝大多数脑肿瘤都可以通过磁共振成像进行唯一的鉴别。 多模态MRI的好处: 每一种模态

    2024年01月25日
    浏览(54)
  • 论文学习——U-Net: Convolutional Networks for Biomedical Image Segmentation

    采用端到端的结构,通过FCN(最后一层仍然是通过卷积完成),最后输出图像。 通过编码(下采样)-解码(上采样)形成一个“U”型结构。每次下采样时,先进行两次卷积(通道数不变),然后通过一次池化层(也可以通过卷积)处理(长宽减半,通道数加倍);在每次上

    2024年02月13日
    浏览(37)
  • 基于U-Net网络实现图像分割

    黎长淼,男,西安工程大学电子信息学院,2022级研究生 研究方向:控制科学与工程 电子邮件:1043626870@qq.com 陈梦丹,女,西安工程大学电子信息学院,2022级硕士研究生,张宏伟人工智能课题组 研究方向:机器视觉与人工智能 电子邮件:1169738496@qq.com U-Net是2015年提出的一种

    2024年02月09日
    浏览(38)
  • U-Net网络结构解析和代码解析

    在语义分割领域,基于深度学习的语义分割算法开山之作是FCN(Fully Convolutional Networks for Semantic Segmentation),而U-Net是遵循FCN的原理,并进行了相应的改进,使其适应小样本的简单分割问题。U-Net网络在医疗影像领域的应用十分广泛,成为了大多数医疗影像语义分割任务的ba

    2024年02月05日
    浏览(34)
  • notepad++官网地址 https://notepad-plus-plus.org/;notepad++ 官网地址 https://notepad-plus-plus.org/

    notepad++ 官网地址 https://notepad-plus-plus.org/ 今天想进官网下载notepad++ ,却发现百度搜索官网都是出来很多乱七八糟的,就自己记录一下 notepad++官网:https://notepad-plus-plus.org/ notepad++项目主页:https://github.com/notepad-plus-plus/notepad-plus-plus/

    2024年02月11日
    浏览(40)
  • U-Net网络模型改进(添加通道与空间注意力机制)---亲测有效,指标提升

    U-Net网络模型(注意力改进版本) 这一段时间做项目用到了U-Net网络模型,但是原始的U-Net网络还有很大的改良空间,在卷积下采样的过程中加入了通道注意力和空间注意力 。 常规的U-net模型如下图: 红色箭头为可以添加的地方:即下采样之间。 通道空间注意力是一个即插即

    2024年03月15日
    浏览(44)
  • 文献速递:生成对抗网络医学影像中的应用——3DGAUnet:一种带有基于3D U-Net的生成器的3D生成对抗网络

    给大家分享文献的主题是生成对抗网络(Generative adversarial networks, GANs)在医学影像中的应用。文献的研究内容包括同模态影像生成、跨模态影像生成、GAN在分类和分割方面的应用等。生成对抗网络与其他方法相比展示出了优越的数据生成能力,使它们在医学图像应用中广受欢

    2024年02月02日
    浏览(46)
  • 图像分割算法U-net

    @[TOC] UNet是一种用于图像分割任务的深度学习模型,最初由Olaf Ronneberger等人在2015年提出。它的名字来源于其U形状的网络结构。 UNet的主要特点是它使用了编码器和解码器结构,其中编码器部分由一系列卷积层和池化层组成,可以对输入图像进行特征提取和压缩。解码器部分则

    2024年01月23日
    浏览(36)
  • 医学图像分割综述:U-Net系列

    论文地址 代码地址 医学图像自动分割是医学领域的一个重要课题,也是计算机辅助诊断范式的一个重要对应。U-Net是最广泛的图像分割架构,由于其灵活性,优化的模块化设计,并在所有医学图像模式的成功。多年来,U-Net模型得到了学术界和工业界研究人员的极大关注。该

    2024年02月05日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包