accuracy_score函数

这篇具有很好参考价值的文章主要介绍了accuracy_score函数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.acc计算原理


sklearn中accuracy_score函数计算了准确率。

在二分类或者多分类中,预测得到的label,跟真实label比较,计算准确率。

在multilabel(多标签问题)分类中,该函数会返回子集的准确率。如果对于一个样本来说,必须严格匹配真实数据集中的label,整个集合的预测标签返回1.0;否则返回0.0.

2.acc的不适用场景:


在正负样本不平衡的情况下,准确率这个评价指标有很大的缺陷。比如在互联网广告里面,点击的数量是很少的,一般只有千分之几,如果用acc,即使全部预测成负类(不点击)acc也有 99% 以上,没有意义。因此,单纯靠准确率来评价一个算法模型是远远不够科学全面的。在类别不平衡没那么太严重时,该指标具有一定的参考意义。

3.metrics.accuracy_score()的使用方法


不管是二分类还是多分类,还是多标签问题,计算公式都为:

只是在多标签问题中,TP、TN要求更加严格,必须严格匹配真实数据集中的label。

sklearn.metrics.accuracy_score(y_true, y_pred, *, normalize=True, sample_weight=None)


输入参数:

y_true:真是标签。二分类和多分类情况下是一列,多标签情况下是标签的索引。

y_pred:预测标签。二分类和多分类情况下是一列,多标签情况下是标签的索引。

normalize:bool, optional (default=True),如果是false,正确分类的样本的数目(int);如果为true,返回正确分类的样本的比例,必须严格匹配真实数据集中的label,才为1,否则为0。

sample_weight:array-like of shape (n_samples,), default=None。Sample weights.

输出:

如果normalize == True,返回正确分类的样本的比例,否则返回正确分类的样本的数目(int)。文章来源地址https://www.toymoban.com/news/detail-433393.html

到了这里,关于accuracy_score函数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分类问题的评价指标(Precision、Recall、Accuracy、F1-Score、Micro-F1、Macro-F1)以及混淆矩阵、ROC曲线

    真阳性:预测为正,实际为正。把正样本 成功 预测为正。  TP ——True Positive 假阳性:预测为正,实际为负。把负样本 错误 预测为正。  FP ——False Positive  ——误报 真阴性:预测为负、实际为负。把负样本 成功 预测为负。  TN ——True Negative 假阴性:预测与负、实际

    2024年01月19日
    浏览(44)
  • ElasticSearch之score打分机制原理

    Elasticsearch 的得分机制是一个基于词频和逆文档词频的公式,简称为 TF-IDF 公式,所以先来研究下 TF-IDF 原理。 TF-IDF 的英文全称是: Term Frequency - Inverse Document Frequency ,中文名称词频-逆文档频率。 常用于文本挖掘,资讯检索等应用,在 NLP 以及推荐等领域都是一个常用的指标

    2023年04月25日
    浏览(77)
  • 【HBZ分享】ES的评分score机制的原理

    基础评分boost,默认2.2, 逆向文档频率值(IDF):表示该词再文档中(ES中)出现的次数越多,表示越不重要,评分越低 在文档中出现的频率(TF):表示该词在文档中出现的频率,频率越高表示越重要,评分越高 注意: IDF是出现次数越多,则评分越低, 而TF是出现次数越高,

    2024年02月13日
    浏览(36)
  • 【计算机组成原理】函数栈帧

    目录 一、源代码理论分析 二、主函数的创建 三、c语言代码的汇编 注: 不同编译器环境的函数栈帧存在一定差异,本文使用VS2019 源代码: 源代码的主函数和自定义函数运行时都会在栈上开辟空间,变量、参数也是存储在栈里 函数的创建与销毁、变量的创建与销毁都依靠寄

    2024年02月14日
    浏览(33)
  • ElasticSearch第十一讲 ES检索评分score以及分数计算逻辑

    relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度。Elasticsearch使用的是 term frequency/inverse document frequency算法,简称为TF/IDF算法 Term frequency:搜索文本中的各个词条在field文本中出现了多少次,出现次数越多,就越相关

    2023年04月23日
    浏览(36)
  • 分类模型评估(混淆矩阵, precision, recall, f1-score)的原理和Python实现

    当我们已经获取到一个分类模型的预测值,可以通过不同指标来进行评估。 往往衡量二分类模型是基于以下的混淆矩阵概念: True Positive:真实值为正、预测值为正(真阳性) False Positive:真实值为负、预测值为正(假阳性) False Negative:真实值为正、预测值为负(假阴性)

    2024年02月04日
    浏览(49)
  • Diffusion Model (扩散生成模型)的基本原理详解(二)Score-Based Generative Modeling(SGM)

    本篇是《Diffusion Model (扩散生成模型)的基本原理详解(一)Denoising Diffusion Probabilistic Models(DDPM)》的续写,继续介绍有关diffusion的另一个相关模型,同理,参考文献和详细内容与上一篇相同,读者可自行查阅,本篇着重介绍Score-Based Generative Modeling(SGM)的部分,本篇的理论部分参

    2024年02月09日
    浏览(44)
  • yolov5目标检测神经网络——损失函数计算原理

    前面已经写了4篇关于yolov5的文章,链接如下: 1、基于libtorch的yolov5目标检测网络实现——COCO数据集json标签文件解析 2、基于libtorch的yolov5目标检测网络实现(2)——网络结构实现 3、基于libtorch的yolov5目标检测网络实现(3)——Kmeans聚类获取anchor框尺寸 4、C++实现Kmeans聚类算法获

    2024年02月02日
    浏览(43)
  • 简单线性回归原理&sklearn简单实现

    回归算法是相对分类算法而言的,与我们想要预测的目标变量y的值类型有关。 有时分类问题也可以转化为回归问题,例如的肺癌预测,我们可以用回归模型先预测出患肺癌的概率,然后再给定一个阈值, 例如50%,概率值在50%以下的人划为没有肺癌,50%以上则认为患有肺癌。

    2024年03月10日
    浏览(43)
  • sklearn.preprocessing.StandardScaler函数入门

    目录 sklearn.preprocessing.StandardScaler函数入门 安装和导入 数据准备 特征缩放 结果解释 总结 在机器学习中,数据预处理是一个至关重要的步骤。而常常使用到的数据预处理方法之一就是特征缩放。特征缩放是将不同特征的取值范围映射到相同的尺度上,以确保不同特征对模型的

    2024年02月04日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包