Pytorch实现动物识别(含动物数据集和训练代码)

这篇具有很好参考价值的文章主要介绍了Pytorch实现动物识别(含动物数据集和训练代码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Pytorch实现动物识别(含动物数据集和训练代码)


目录

动物数据集+动物分类识别训练代码(Pytorch)

1. 前言

2. Animals-Dataset动物数据集说明

(1)Animals90动物数据集

(2)Animals10动物数据集

(3)自定义数据集

3. 动物分类识别模型训练

(1)项目安装

(2)准备Train和Test数据

(3)配置文件: config.yaml

(4)开始训练

(5)可视化训练过程

(6)一些优化建议

(7) 一些运行错误处理方法:

cannot import name 'load_state_dict_from_url' 

4. 动物分类识别模型测试效果

5.项目源码下载


1. 前言

基于人工智能的动物AI识别,能够帮助我们快速认知动物品种,对动物科普等研究方面具有重大的意义。本项目将采用深度学习的方法,搭建一个动物分类识别的训练和测试系统。 基于该项目,你可以快速训练一个动物分类识别模型。

目前,基于ResNet18的动物分类识别,支持90种动物分类识别;在Animals90动物数据集上,训练集的Accuracy 99%左右,测试集的Accuracy在91%左右;在Animals10动物数据集上,训练集的Accuracy 99%左右,测试集的Accuracy在96%左右。骨干网络模型可支持googlenet, resnet[18,34,50], inception_v3,mobilenet_v2等常用的模型。

Pytorch实现动物识别(含动物数据集和训练代码)

如果想进一步提高准确率,可以尝试:

  1. 增加样本数据: 可以采集更多的样本数据,提高模型泛化能力
  2. 减少种类:Animals90动物数据集共有90种类,可以剔除部分不常见的动物
  3. 数据清洗数据:动物数据集,部分数据是通过网上爬取的,存在部分错误的图片,尽管鄙人已经清洗一部分了,但还是建议你,训练前,再次清洗数据集,不然会影响模型的识别的准确率。
  4. 使用不同backbone模型,比如resnet50或者更深的模型
  5. 增加数据增强: 已经支持: 随机裁剪,随机翻转,随机旋转,颜色变换等数据增强方式,可以尝试诸如mixup,CutMix等更复杂的数据增强方式
  6. 样本均衡: 建议进行样本均衡处理
  7. 调超参: 比如学习率调整策略,优化器(SGD,Adam等)
  8. 损失函数: 目前训练代码已经支持:交叉熵,LabelSmoothing,可以尝试FocalLoss等损失函数

【源码下载】动物数据集+动物分类识别训练代码(Pytorch)

【尊重原创,转载请注明出处】https://panjinquan.blog.csdn.net/article/details/126640766


2. Animals-Dataset动物数据集说明

(1)Animals90动物数据集

Animals90动物数据集,包含 90 个不同类别动物,约有 5400 张动物图像,每种类含有60张图片。所有照片都已经按照其所属类别存放于各自的文件夹下。动物种类包括常见的类别,如羚羊,獾,蝙蝠,熊,蜜蜂,甲虫,野牛,公猪,蝴蝶,猫 毛虫,黑猩猩等。

为了方便训练,鄙人已将数据划分为训练集和测试集,其中训练集每类50张图片,共4500张图片;测试集每类10张图片,共900张图片

Pytorch实现动物识别(含动物数据集和训练代码)

下面是Animals90动物数据集90类别名称:

antelope
badger
bat
bear
bee
beetle
bison
boar
butterfly
cat
caterpillar
chimpanzee
cockroach
cow
coyote
crab
crow
deer
dog
dolphin
donkey
dragonfly
duck
eagle
elephant
flamingo
fly
fox
goat
goldfish
goose
gorilla
grasshopper
hamster
hare
hedgehog
hippopotamus
hornbill
horse
hummingbird
hyena
jellyfish
kangaroo
koala
ladybugs
leopard
lion
lizard
lobster
mosquito
moth
mouse
octopus
okapi
orangutan
otter
owl
ox
oyster
panda
parrot
pelecaniformes
penguin
pig
pigeon
porcupine
possum
raccoon
rat
reindeer
rhinoceros
sandpiper
seahorse
seal
shark
sheep
snake
sparrow
squid
squirrel
starfish
swan
tiger
turkey
turtle
whale
wolf
wombat
woodpecker
zebra

(2)Animals10动物数据集

Animals10动物数据集,仅包含 10个不同类别动物,分别为:蝴蝶,猫,鸡,牛,狗,象,马,羊,蜘蛛和松鼠,总共约有26000+张动物图像。其中训练集共25000+张图片,平均每类含有2500张图片;测试集每类100张图片,共1000张图片。所有照片都已经按照其所属类别存放于各自的文件夹下。

Pytorch实现动物识别(含动物数据集和训练代码) Pytorch实现动物识别(含动物数据集和训练代码)
Pytorch实现动物识别(含动物数据集和训练代码) Pytorch实现动物识别(含动物数据集和训练代码)

  下面是Animals10动物数据集10类别名称:

butterfly
cat
chicken
cow
dog
elephant
horse
sheep
spider
squirrel

(3)自定义数据集

如果需要新增类别数据,或者需要自定数据集进行训练,可以如下进行处理:

  • Train和Test数据集,要求相同类别的图片,放在同一个文件夹下;且子目录文件夹命名为类别名称,如

Pytorch实现动物识别(含动物数据集和训练代码)

  • 类别文件:一行一个列表: 
     class_name.txt
     (最后一行,请多回车一行)
A
B
C
D

  • 修改配置文件的数据路径:config.yaml
train_data: # 可添加多个数据集
  - 'data/dataset/train1' 
  - 'data/dataset/train2'
test_data: 'data/dataset/test'
class_name: 'data/dataset/class_name.txt'
...
...

3. 动物分类识别模型训练

考虑到Animals90动物数据集种类比较齐全,因此本项目以Animals90动物数据集为训练样本,当然你也可以合并Animals90和Animals10这两个数据集进行训练。

(1)项目安装

整套工程基本框架结构如下:

.
├── classifier                 # 训练模型相关工具
├── configs                    # 训练配置文件
├── data                       # 训练数据
├── libs           
├── demo.py              # 模型推理demo
├── README.md            # 项目工程说明文档
├── requirements.txt     # 项目相关依赖包
└── train.py             # 训练文件

  项目依赖python包请参考requirements.txt,使用pip安装即可:

numpy==1.16.3
matplotlib==3.1.0
Pillow==6.0.0
easydict==1.9
opencv-contrib-python==4.5.2.52
opencv-python==4.5.1.48
pandas==1.1.5
PyYAML==5.3.1
scikit-image==0.17.2
scikit-learn==0.24.0
scipy==1.5.4
seaborn==0.11.2
tensorboard==2.5.0
tensorboardX==2.1
torch==1.7.1+cu110
torchvision==0.8.2+cu110
tqdm==4.55.1
xmltodict==0.12.0
basetrainer
pybaseutils==0.6.5

  项目安装教程请参考(初学者入门,麻烦先看完下面教程,配置好开发环境):

  • 项目开发使用教程和常见问题和解决方法
  • 视频教程:1 手把手教你安装CUDA和cuDNN(1)
  • 视频教程:2 手把手教你安装CUDA和cuDNN(2)
  • 视频教程:3 如何用Anaconda创建pycharm环境
  • 视频教程:4 如何在pycharm中使用Anaconda创建的python环境

(2)准备Train和Test数据

下载动物分类数据集,Train和Test数据集,要求相同类别的图片,放在同一个文件夹下;且子目录文件夹命名为类别名称。

数据增强方式主要采用: 随机裁剪,随机翻转,随机旋转,颜色变换等处理方式

import numbers
import random
import PIL.Image as Image
import numpy as np
from torchvision import transforms


def image_transform(input_size, rgb_mean=[0.5, 0.5, 0.5], rgb_std=[0.5, 0.5, 0.5], trans_type="train"):
    """
    不推荐使用:RandomResizedCrop(input_size), # bug:目标容易被crop掉
    :param input_size: [w,h]
    :param rgb_mean:
    :param rgb_std:
    :param trans_type:
    :return::
    """
    if trans_type == "train":
        transform = transforms.Compose([
            transforms.Resize([int(128 * input_size[1] / 112), int(128 * input_size[0] / 112)]),
            transforms.RandomHorizontalFlip(),  # 随机左右翻转
            # transforms.RandomVerticalFlip(), # 随机上下翻转
            transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1),
            transforms.RandomRotation(degrees=5),
            transforms.RandomCrop([input_size[1], input_size[0]]),
            transforms.ToTensor(),
            transforms.Normalize(mean=rgb_mean, std=rgb_std),
        ])
    elif trans_type == "val" or trans_type == "test":
        transform = transforms.Compose([
            transforms.Resize([input_size[1], input_size[0]]),
            # transforms.CenterCrop([input_size[1], input_size[0]]),
            # transforms.Resize(input_size),
            transforms.ToTensor(),
            transforms.Normalize(mean=rgb_mean, std=rgb_std),
        ])
    else:
        raise Exception("transform_type ERROR:{}".format(trans_type))
    return transform

修改配置文件数据路径:config.yaml

  • 注意数据路径分隔符使用【/】,不是【\】
  • 项目不要出现含有中文字符的目录文件或路径,否则会出现很多异常!
# 训练数据集,可支持多个数据集
train_data:
  - '/path/to/animal/animals90/train'
# 测试数据集
test_data: '/path/to/animal/animals90/test'
# 类别文件
class_name: '/path/to/animal/animals90/class_name.txt'

(3)配置文件: config.yaml

  • 目前支持的backbone有:googlenet,resnet[18,34,50],inception_v3,mobilenet_v2等, 其他backbone可以自定义添加
  • 训练参数可以通过(configs/config.yaml)配置文件进行设置

 配置文件config.yaml说明如下:

# 训练数据集,可支持多个数据集
train_data:
  - '/path/to/animal/animals90/train'
# 测试数据集
test_data: '/path/to/animal/animals90/test'
# 类别文件
class_name: '/path/to/animal/animals90/class_name.txt'
train_transform: "train"       # 训练使用的数据增强方法
test_transform: "val"          # 测试使用的数据增强方法
work_dir: "work_space/"        # 保存输出模型的目录
net_type: "resnet18"           # 骨干网络,支持:resnet18/50,mobilenet_v2,googlenet,inception_v3
width_mult: 1.0
input_size: [ 224,224 ]        # 模型输入大小
rgb_mean: [ 0.5, 0.5, 0.5 ]    # for normalize inputs to [-1, 1],Sequence of means for each channel.
rgb_std: [ 0.5, 0.5, 0.5 ]     # for normalize,Sequence of standard deviations for each channel.
batch_size: 32
lr: 0.01                       # 初始学习率
optim_type: "SGD"              # 选择优化器,SGD,Adam
loss_type: "CrossEntropyLoss"  # 选择损失函数:支持CrossEntropyLoss,LabelSmoothing
momentum: 0.9                  # SGD momentum
num_epochs: 100                # 训练循环次数
num_warn_up: 3                 # warn-up次数
num_workers: 8                 # 加载数据工作进程数
weight_decay: 0.0005           # weight_decay,默认5e-4
scheduler: "multi-step"        # 学习率调整策略
milestones: [ 20,50,80 ]       # 下调学习率方式
gpu_id: [ 0 ]                  # GPU ID
log_freq: 50                   # LOG打印频率
progress: True                 # 是否显示进度条
pretrained: False              # 是否使用pretrained模型
finetune: False                # 是否进行finetune
参数 类型 参考值 说明
train_data str, list - 训练数据文件,可支持多个文件
test_data str, list - 测试数据文件,可支持多个文件
class_name str - 类别文件
work_dir str work_space 训练输出工作空间
net_type str resnet18
backbone类型,{resnet18/50,mobilenet_v2,googlenet,inception_v3}
input_size list [128,128] 模型输入大小[W,H]
batch_size int 32 batch size
lr float 0.1 初始学习率大小
optim_type str SGD 优化器,{SGD,Adam}
loss_type str CELoss 损失函数
scheduler str multi-step 学习率调整策略,{multi-step,cosine}
milestones list [30,80,100] 降低学习率的节点,仅仅scheduler=multi-step有效
momentum float 0.9 SGD动量因子
num_epochs int 120 循环训练的次数
num_warn_up int 3 warn_up的次数
num_workers int 12 DataLoader开启线程数
weight_decay float 5e-4 权重衰减系数
gpu_id list [ 0 ] 指定训练的GPU卡号,可指定多个
log_freq in 20 显示LOG信息的频率
finetune str model.pth finetune的模型
progress bool True 是否显示进度条
distributed bool False 是否使用分布式训练

(4)开始训练

整套训练代码非常简单操作,用户只需要将相同类别的数据放在同一个目录下,并填写好对应的数据路径,即可开始训练了。

终端输入:

python train.py -c configs/config.yaml 

(5)可视化训练过程

训练过程可视化工具是使用Tensorboard,使用方法,在终端输入:
# 基本方法
tensorboard --logdir=path/to/log/
# 例如
tensorboard --logdir=work_space/mobilenet_v2_1.0_CrossEntropyLoss/log

可视化效果 

​​Pytorch实现动物识别(含动物数据集和训练代码) ​​Pytorch实现动物识别(含动物数据集和训练代码)
Pytorch实现动物识别(含动物数据集和训练代码)​​ ​​Pytorch实现动物识别(含动物数据集和训练代码)
​​Pytorch实现动物识别(含动物数据集和训练代码) ​​Pytorch实现动物识别(含动物数据集和训练代码)

(6)一些优化建议

训练完成后,目前,基于ResNet18的动物分类识别在Animals90动物数据集上,训练集的Accuracy 99%左右,测试集的Accuracy在91%左右;在Animals10动物数据集上,训练集的Accuracy 99%左右,测试集的Accuracy在96%左右。如果想进一步提高准确率,可以尝试:

  1. 增加样本数据: 可以采集更多的样本数据,提高模型泛化能力
  2. 减少种类:Animals90动物数据集共有90种类,可以剔除部分不常见的动物
  3. 数据清洗数据:动物数据集,部分数据是通过网上爬取的,存在部分错误的图片,尽管鄙人已经清洗一部分了,但还是建议你,训练前,再次清洗数据集,不然会影响模型的识别的准确率。
  4. 使用不同backbone模型,比如resnet50或者更深的模型
  5. 增加数据增强: 已经支持: 随机裁剪,随机翻转,随机旋转,颜色变换等数据增强方式,可以尝试诸如mixup,CutMix等更复杂的数据增强方式
  6. 样本均衡: 建议进行样本均衡处理
  7. 调超参: 比如学习率调整策略,优化器(SGD,Adam等)
  8. 损失函数: 目前训练代码已经支持:交叉熵,LabelSmoothing,可以尝试FocalLoss等损失函数

(7) 一些运行错误处理方法:

  • 项目不要出现含有中文字符的目录文件或路径,否则会出现很多异常!!!!!!!!

  • cannot import name 'load_state_dict_from_url' 

由于一些版本升级,会导致部分接口函数不能使用,请确保版本对应

torch==1.7.1

torchvision==0.8.2

或者将对应python文件将

from torchvision.models.resnet import model_urls, load_state_dict_from_url

修改为:

from torch.hub import load_state_dict_from_url
model_urls = {
    'mobilenet_v2': 'https://download.pytorch.org/models/mobilenet_v2-b0353104.pth',
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
    'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
    'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
    'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
    'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
}

4. 动物分类识别模型测试效果

 demo.py文件用于推理和测试模型的效果,填写好配置文件,模型文件以及测试图片即可运行测试了

def get_parser():
    # 配置文件
    config_file = "data/pretrained/resnet18_1.0_LabelSmoothing_20220830191723/config.yaml"
    # 模型文件
    model_file = "data/pretrained/resnet18_1.0_LabelSmoothing_20220830191723/model/best_model_096_91.1111.pth"
    # 待测试图片目录
    image_dir = "data/test_images/animals"
    parser = argparse.ArgumentParser(description="Inference Argument")
    parser.add_argument("-c", "--config_file", help="configs file", default=config_file, type=str)
    parser.add_argument("-m", "--model_file", help="model_file", default=model_file, type=str)
    parser.add_argument("--device", help="cuda device id", default="cuda:0", type=str)
    parser.add_argument("--image_dir", help="image file or directory", default=image_dir, type=str)
    return parser
#!/usr/bin/env bash
# Usage:
# python demo.py  -c "path/to/config.yaml" -m "path/to/model.pth" --image_dir "path/to/image_dir"

# 配置文件
config_file="data/pretrained/resnet18_1.0_LabelSmoothing_20220830191723/config.yaml"
# 模型文件
model_file="data/pretrained/resnet18_1.0_LabelSmoothing_20220830191723/model/best_model_096_91.1111.pth"
# 待测试图片目录
image_dir="data/test_images/animals"
python demo.py -c $config_file  -m $model_file --image_dir $image_dir

Windows系统,请将$config_file, $model_file ,$image_dir等变量代替为对应的变量值即可,如

# 配置文件
python demo.py -c "data/pretrained/resnet18_1.0_LabelSmoothing_20220830191723/config.yaml"  -m "data/pretrained/resnet18_1.0_LabelSmoothing_20220830191723/model/best_model_096_91.1111.pth" --image_dir "data/test_images/animals"

运行测试结果: 

Pytorch实现动物识别(含动物数据集和训练代码)

Pytorch实现动物识别(含动物数据集和训练代码)

pred_index:['cat'],pred_score:[0.9299037]

Pytorch实现动物识别(含动物数据集和训练代码)

​pred_index:['cow'],pred_score:[0.8641183]

Pytorch实现动物识别(含动物数据集和训练代码)

pred_index:['duck'],pred_score:[0.20411915]

Pytorch实现动物识别(含动物数据集和训练代码)

pred_index:['duck'],pred_score:[0.8169622]


5.项目源码下载

整套项目源码内容包含:

  • Animals90动物数据集,包含 90 个不同类别动物,总共约有5400 张动物图像,每种类含有60张图片,其中训练集每类50张图片,共4500张图片;测试集每类10张图片,共900张图片
  • Animals10动物数据集,包含 10 个不同类别动物,总共约有26000+张动物图像,其中训练集共25000+张图片,平均每类含有2500张图片;测试集每类100张图片,共1000张图片
  • 支持自定义数据集训练
  • 整套动物分类训练代码和测试代码(Pytorch版本), 支持的backbone骨干网络模型有:googlenet,resnet[18,34,50],inception_v3,mobilenet_v2等, 其他backbone可以自定义添加

 【源码下载】动物数据集+动物分类识别训练代码(Pytorch)文章来源地址https://www.toymoban.com/news/detail-433494.html

到了这里,关于Pytorch实现动物识别(含动物数据集和训练代码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Pytorch实现鸟类品种分类识别(含训练代码和鸟类数据集)

    目录 Pytorch实现鸟类识别(含训练代码和鸟类数据集) 1. 前言 2. 鸟类数据集 (1)Bird-Dataset26 (2)自定义数据集 3. 鸟类分类识别模型训练 (1)项目安装 (2)准备Train和Test数据 (3)配置文件:​config.yaml​ (4)开始训练 (5)可视化训练过程 (6)一些优化建议 (7) 一些运

    2024年02月09日
    浏览(63)
  • Pytorch实现中药材(中草药)分类识别(含训练代码和数据集)

    目录 Pytorch实现中药材(中草药)分类识别(含训练代码和数据集) 1. 前言 2. 中药材(中草药)数据集说明 (1)中药材(中草药)数据集:Chinese-Medicine-163 (2)自定义数据集 3. 中草药分类识别模型训练 (1)项目安装 (2)准备Train和Test数据 (3)配置文件: config.yaml (4)开始训练 (

    2023年04月13日
    浏览(40)
  • 年龄性别预测2:Pytorch实现年龄性别预测和识别(含训练代码和数据)

    目录 年龄性别预测2:Pytorch实现年龄性别预测和识别(含训练代码和数据) 1.年龄性别预测和识别方法 2.年龄性别预测和识别数据集 3.人脸检测模型 4.年龄性别预测和识别模型训练 (1)项目安装 (2)准备数据 (3)年龄性别模型训练(Pytorch) (4) 可视化训练过程 (5) 年龄性

    2024年01月19日
    浏览(70)
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的动物识别系统(Python+PySide6界面+训练代码)

    摘要:本博客文章深入解析了基于深度学习的动物识别系统的完整代码,并展示了采用领先的YOLOv8算法的实现代码。该系统与YOLOv7、YOLOv6、YOLOv5等早期版本的性能进行了比较,可以从静态图像到实时视频流的各种媒介中识别动物的高效性和准确性。文章不仅详尽地阐释了YOL

    2024年03月27日
    浏览(50)
  • 人工智能实验:动物识别系统(C++代码实现)

    建立一个动物识别系统的规则库,编写程序用以识别虎、豹、斑马、长颈鹿、企鹅、鸵鸟、信天翁等7种动物。 为了识别这些动物,可以根据动物识别的特征,建立包含下述规则库: R1:if 动物有毛发 then 动物是哺乳动物 R2:if 动物有奶 then 动物是哺乳动物 R3:if 动物有羽毛

    2024年02月03日
    浏览(72)
  • 用 Python 实现数据集的分割,将数据集分为训练集和测试集

    用 Python 实现数据集的分割,将数据集分为训练集和测试集 在机器学习中,数据集的分割是非常重要的,常见的方法是将数据集分为训练集和测试集。本文将介绍如何使用 Python 中的 Sklearn 实现数据集分割。 首先,我们需要导入 Sklearn 库,并加载数据集,这里我们以鸢尾花数

    2024年02月07日
    浏览(40)
  • 图像分类 | 基于 Labelme 数据集和 VGG16 预训练模型实现迁移学习

    Hi,大家好,我是源于花海。 本文主要使用数据标注工具 Labelme   对自行车(bike)和摩托车(motorcycle)这两种训练样本进行标注,使用预训练模型  VGG16  作为卷积基,并在其之上添加了全连接层。基于标注样本的信息和预训练模型的特征提取能力,训练自己构建的 图像分

    2024年01月20日
    浏览(46)
  • 基于深度学习的高精度动物园动物检测识别系统(PyTorch+Pyside6+YOLOv5模型)

    摘要:基于深度学习的高精度动物园动物(水牛、斑马、大象、水豚、海龟、猫、奶牛、鹿、狗、火烈鸟、长颈鹿、捷豹、袋鼠、狮子、鹦鹉、企鹅、犀牛、羊、老虎)检测识别系统可用于日常生活中或野外来检测与定位动物园动物,利用深度学习算法可实现图片、视频、摄

    2024年02月12日
    浏览(53)
  • 基于深度学习的高精度动物检测识别系统(PyTorch+Pyside6+YOLOv5模型)

    摘要:基于深度学习的高精度动物检测识别系统可用于日常生活中或野外来检测与定位动物目标(狼、鹿、猪、兔和浣熊),利用深度学习算法可实现图片、视频、摄像头等方式的动物(狼、鹿、猪、兔和浣熊)目标检测识别,另外支持结果可视化与图片或视频检测结果的导

    2024年02月08日
    浏览(84)
  • ChatGPT技术原理 第九章:数据集和训练技巧

    目录 9.1 对话数据集 9.2 数据预处理 9.3 预训练技巧 9.4 微调技巧

    2024年02月02日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包