grad_fn 属性的作用

这篇具有很好参考价值的文章主要介绍了grad_fn 属性的作用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在 PyTorch 中,每个张量(tensor)都有一个 .grad_fn 属性,用于表示该张量是如何计算出来的(即其生成该张量的操作)。如果一个张量是由用户直接创建的,则其 .grad_fn 属性为 None,表明该张量没有依赖其他张量生成;如果一个张量是通过一个或多个操作生成的,则其 .grad_fn 属性为相应的操作,表明该张量依赖于其他张量生成。

.grad_fn 属性在计算图(computational graph)中起到了非常重要的作用。计算图是将计算过程整体可视化的图形化表示,其中节点表示计算操作,边表示计算结果的传递过程。在 PyTorch 中,计算图是动态构建的,即在执行每个操作时都会生成一个新的节点,将其连接到已有的节点上。在反向传播(backpropagation)过程中,计算图会被反向遍历,从输出张量(即目标张量)开始逐个计算每个张量的导数(即梯度)并保存在相应的张量中,最终得到整张图的梯度信息。由于 .grad_fn 属性记录了每个张量的生成操作,因此在反向传播时可以根据 .grad_fn 属性寻找每个张量的生成操作,并根据该操作的导数规则求出该张量在当前图结构下的梯度。

需要注意的是,只有 requires_grad=True 的张量才会生成 grad_fn 属性,才能进行自动求导。如果需要对一个张量进行求导,需要手动设置 requires_grad=True。

例子:

比如张量的记录属性是AddmmBackward0</文章来源地址https://www.toymoban.com/news/detail-433593.html

到了这里,关于grad_fn 属性的作用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 关于pytorch张量维度转换及张量运算

    view() 用于 改变张量的形状 ,但 不会改变张量中的元素值 。 用法1: 例如,你可以使用view 将一个形状是(2,3)的张量变换成(3,2)的张量; 上面的操作相当于,先把形状为**(2,3)的tensor展平,变成(1,6),然后再变成(3,2).** 用法2: 转换前后张量中的元素个数

    2024年02月06日
    浏览(49)
  • Pytorch autograd.grad与autograd.backward详解

    平时在写 Pytorch 训练脚本时,都是下面这种无脑按步骤走: 对用户屏蔽底层自动微分的细节,使得用户能够根据简单的几个 API 将模型训练起来。这对于初学者当然是极好的,也是 Pytorch 这几年一跃成为最流行的深度学习框架的主要原因:易用性。 但是,我们有时需要深究自

    2023年04月09日
    浏览(42)
  • Pytorch使用Grad-CAM绘制热力图

    原理与代码学习自B站霹雳吧啦Wz老师 使用grad_cam对不同预测目标的图像做activate图。 效果见下图。 使用的是自己训练的MobileNetV2 需要模型feature的最后一层,模型训练权重。 代码如下: 还有别的图的效果。总之没有很精细,但也不错了。 大概就是在将本张图片分为感兴趣类

    2024年02月12日
    浏览(43)
  • Grad-CAM的详细介绍和Pytorch代码实现

    Grad-CAM (Gradient-weighted Class Activation Mapping) 是一种可视化深度神经网络中哪些部分对于预测结果贡献最大的技术。它能够定位到特定的图像区域,从而使得神经网络的决策过程更加可解释和可视化。 Grad-CAM 的基本思想是,在神经网络中,最后一个卷积层的输出特征图对于分类结

    2023年04月19日
    浏览(36)
  • 类别激活热力图grad-cam(pytorch)实战跑图

    类激活热力图:用于检查图像哪一部分对模型的最终输出有更大的贡献。具体某个类别对应到图片的那个区域响应最大,也就是对该类别的识别贡献最大 pytorch-grad-cam库代码GitHub代码 如果只想跑个图的话不用下! 作用:一是清晰直观的看看到底影响检测结果的特征;而是cv论

    2024年02月07日
    浏览(38)
  • 分类任务使用Pytorch实现Grad-CAM绘制热力图

    对于深度学习网络,在我们指定数据集类别的情况下,Grad-CAM能够绘制出相应的热力图,让我们能够非常直观的看出网络关注的主要区域与特征是什么。本文主要记录在绘制热力图过程中,自己碰到的一些实际问题,希望能对小伙伴们有所帮助。 以下是本文的参考视频和代码

    2024年02月04日
    浏览(49)
  • 【PyTorch】PyTorch中张量(Tensor)计算操作

    第五章 PyTorch中张量(Tensor)计算操作 上文介绍了PyTorch中 张量(Tensor) 的 拆分 和 拼接 操作,本文将介绍 张量 的 计算 操作。 函数 描述 torch.allclose() 比较两个元素是否接近 torch.eq() 逐元素比较是否相等 torch.equal() 判断两个张量是否具有相同的形状和元素 torch.ge() 逐元素比较大

    2024年02月20日
    浏览(47)
  • 【PyTorch】PyTorch中张量(Tensor)统计操作

    第五章 PyTorch中张量(Tensor)统计操作 上文介绍了PyTorch中张量(Tensor)的计算操作,本文将介绍张量的统计操作。 函数 描述 torch.max() 找出张量中的 最大值 torch.argmax() 输出 最大值所在位置 torch.min() 找出张量中的 最小值 torch.argmin() 输出 最小值所在位置 torch.sort() 对一维张量或多

    2024年02月21日
    浏览(42)
  • 深入理解PyTorch中的train()、eval()和no_grad()

    ❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈 (封面图由文心一格生成) 在PyTorch中,train()、eval()和no_grad()是三个非常重

    2023年04月08日
    浏览(47)
  • PyTorch C++ 前端:张量

    本篇文章将尝试了解 PyTorch 组件的高级概述以及它们如何配合。 PyTorch 组件的高级概述 后端 PyTorch 后端是用 C++ 编写的,它提供 API 来访问高度优化的库,例如:用于高效矩阵运算的张量库、用于执行 GPU 运算的 CUDA 库以及用于梯度计算的自动微分等。 前端 可以使用 Python 或

    2024年02月07日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包