深度学习(23):SmoothL1Loss损失函数

这篇具有很好参考价值的文章主要介绍了深度学习(23):SmoothL1Loss损失函数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0. 基本介绍

SmoothL1Loss是一种常用的损失函数,通常用于回归任务中,其相对于均方差(MSE)损失函数的优势在于对异常值(如过大或过小的离群点)的惩罚更小,从而使模型更加健壮。

SmoothL1Loss的公式为:

l o s s ( x , y ) = { 0.5 ( x − y ) 2 if  ∣ x − y ∣ < 1 ∣ x − y ∣ − 0.5 otherwise loss(x,y) = \begin{cases} 0.5(x-y)^2 & \text{if } |x-y| < 1 \\ |x-y| - 0.5 & \text{otherwise} \end{cases} loss(x,y)={0.5(xy)2xy0.5if xy<1otherwise

其中,x和y分别为模型的输出和标签,|x-y|表示它们之间的差异。当|x-y|小于1时,采用平方误差;否则采用线性误差。这使得SmoothL1Loss相比于MSE更加鲁棒,即对于异常值的响应更加平缓。

在PyTorch中,可以使用nn.SmoothL1Loss()函数来构建SmoothL1Loss损失函数。

1. 绘制SmoothL1Loss函数

通过修改torch.linspace中的参数,可以改变图像的横坐标范围;通过修改torch.zeros中的参数,可以改变图像的高度和形状。

import torch.nn as nn
import matplotlib.pyplot as plt
import torch

# 定义函数和参数
smooth_l1_loss = nn.SmoothL1Loss(reduction='none')
x = torch.linspace(-1, 1, 10000)
y = smooth_l1_loss(torch.zeros(10000), x)

# x2 = 1e3*x
# y2 = 1e-3*smooth_l1_loss(torch.zeros(10000), x2)

# 绘制图像
plt.plot(x, y)
# plt.plot(x, y2)
plt.xlabel('x')
plt.ylabel('SmoothL1Loss')
plt.title('SmoothL1Loss Function')
plt.show()

深度学习(23):SmoothL1Loss损失函数

2. 移动SmoothL1Loss公式的临界点

移动临界点是为了在不尽兴其他操作的情况下,放大模型的损失

移动到0.1

import torch.nn as nn
import matplotlib.pyplot as plt
import torch

# 定义函数和参数
smooth_l1_loss = nn.SmoothL1Loss(reduction='none')
x = torch.linspace(-1, 1, 10000)
y = smooth_l1_loss(torch.zeros(10000), x)

x2 = 1e1*x
y2 = 1e-1*smooth_l1_loss(torch.zeros(10000), x2)

# 绘制图像
plt.plot(x, y)
plt.plot(x, y2)
plt.xlabel('x')
plt.ylabel('SmoothL1Loss')
plt.title('SmoothL1Loss Function')
plt.show()

如下,箭头处保持玩弯曲
深度学习(23):SmoothL1Loss损失函数

移动到0.01

如下,箭头处还可以看到弯曲

import torch.nn as nn
import matplotlib.pyplot as plt
import torch

# 定义函数和参数
smooth_l1_loss = nn.SmoothL1Loss(reduction='none')
x = torch.linspace(-1, 1, 10000)
y = smooth_l1_loss(torch.zeros(10000), x)

x2 = 1e2*x
y2 = 1e-2*smooth_l1_loss(torch.zeros(10000), x2)

# 绘制图像
plt.plot(x, y)
plt.plot(x, y2)
plt.xlabel('x')
plt.ylabel('SmoothL1Loss')
plt.title('SmoothL1Loss Function')
plt.show()

深度学习(23):SmoothL1Loss损失函数文章来源地址https://www.toymoban.com/news/detail-434097.html

到了这里,关于深度学习(23):SmoothL1Loss损失函数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习基础5:交叉熵损失函数、MSE、CTC损失适用于字识别语音等序列问题、Balanced L1 Loss适用于目标检测

    深度学习基础5:交叉熵损失函数、MSE、CTC损失适用于字识别语音等序列问题、Balanced L1 Loss适用于目标检测 在物理学中,“熵”被用来表示热力学系统所呈现的无序程度。香农将这一概念引入信息论领域,提出了“信息熵”概念,通过对数函数来测量信息的不确定性。交叉熵(

    2023年04月18日
    浏览(52)
  • 深度学习——常见损失函数Loss:L1 ,L2 ,MSE ,Binary Cross ,Categorical Cross ,Charbonnier ,Weighted TV ,PSNR

    在深度学习中,损失函数是一个核心组件,它度量模型的预测结果与真实值之间的差异。通过最小化损失函数的值,模型能够在训练过程中逐渐改善其性能。损失函数为神经网络提供了一个明确的优化目标,是连接数据和模型性能的重要桥梁。 选择合适的损失函数是非常重要

    2024年01月24日
    浏览(56)
  • torch.nn中的L1Loss和MSELoss

    我们打开Pytorch官网,找到torch.nn中的loss function,进去如下图所示。   我们先来看看 L1LOSS 损失函数的使用。下图是官网给出的描述。         L1loss有两种方式,一种是将所有误差累加作为总损失,另一种是将所有误差累加之后求平均作为总损失。         例如,给定输入

    2024年02月09日
    浏览(39)
  • 论文代码学习—HiFi-GAN(3)——模型损失函数loss解析

    这里翻译了HiFi-GAN这篇论文的具体内容,具体链接。 这篇文章还是学到了很多东西,从整体上说,学到了生成对抗网络的构建思路,包括生成器和鉴定器。细化到具体实现的细节,如何 实现对于特定周期的数据处理?在细化,膨胀卷积是如何实现的?这些通过文章,仅仅是了

    2024年02月14日
    浏览(91)
  • 损失函数——对数损失(Logarithmic Loss,Log Loss)

    对数损失(Logarithmic Loss,Log Loss) 是一种用于衡量分类模型的损失函数。它通常用于二元分类问题,但也可以用于多元分类问题。 在二元分类问题中,Log Loss 基于预测概率和实际标签的对数误差来计算损失。对于一个样本 i,假设它的实际标签是 yi​(取值为 0 或 1),模

    2024年02月15日
    浏览(54)
  • 损失函数——Dice Loss损失函数

    Dice Loss 是一种用于图像分割任务的损失函数,它的基本思想是计算预测结果和真实结果的重叠部分,通过最小化两者的差异来优化模型。Dice Loss被广泛用于医学图像分割任务中。 Dice Loss的计算公式如下:  其中,N是像素总数,pi​是模型预测的第i个像素的值,gi​是真实标

    2024年02月07日
    浏览(44)
  • 损失函数——感知损失(Perceptual Loss)

    感知损失(Perceptual Loss) 是一种基于深度学习的图像风格迁移方法中常用的损失函数。与传统的均方误差损失函数(Mean Square Error,MSE)相比,感知损失更注重图像的感知质量,更符合人眼对图像质量的感受。 感知损失是通过预训练的神经网络来计算两张图片之间的差异。通

    2024年02月04日
    浏览(46)
  • 【机器学习】验证集loss震荡(loss的其他问题) 训练深度学习模型loss为nan的原因

    训练过程中发现,train loss一直下降,train acc一直上升;但是val loss、val acc却一直震荡。loss一会上一会下,但是总体趋势是向下的。 “loss震荡但验证集准确率总体下降” 如何解决? 测试集准确率这样震荡是正常的吗? - 李峰的回答 - 知乎 很多经验:loss问题汇总(不收敛、

    2024年02月12日
    浏览(46)
  • 损失函数——交叉熵损失(Cross-entropy loss)

    交叉熵损失(Cross-entropy loss) 是深度学习中常用的一种损失函数,通常用于分类问题。它衡量了模型预测结果与实际结果之间的差距,是优化模型参数的关键指标之一。以下是交叉熵损失的详细介绍。 假设我们有一个分类问题,需要将输入数据x分为C个不同的类别。对于每个

    2024年02月02日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包