概述
三维重建的 SfM (Structure from Motion) 算法是通过多张二维图片来重建三维场景的算法。
算法实现流程:
- 特征点提取
在这个步骤中,需要对每张图片提取出一些特征点,并计算它们的描述子。在特征点提取的过程中,可以使用 SIFT,SURF 等算法。一般来说,一个好的特征点需要具备旋转不变性、尺度不变性和灰度不变性。 - 特征匹配
将不同图片中的特征点进行匹配,找到它们之间的对应关系。可以使用 KNN,FLANN 等算法进行特征匹配。需要注意的是,在匹配的过程中,需要使用一些鲁棒的技巧来避免匹配误差的影响。 - 相机姿态估计
通过特征点匹配,可以得到不同图片之间的几何变换关系。通过这些变换关系,可以估计出相机的姿态,包括相机的位置和方向。常用的算法包括 RANSAC 算法和 P3P 算法。 - 三角测量
在相机姿态估计的基础上,通过三角测量的方法来估计场景中每个特征点的三维位置。一般来说,需要使用两个相机的视角来进行三角测量,这个过程叫做三角化。 - 重建场景
在完成了每张图片的三维重建之后,需要将它们融合起来来构建整个场景的三维模型。可以使用 BA(Bundle Adjustment)等算法对重建结果进行优化。
需要注意的是,由于 SfM 算法是一种迭代的算法,所以在每个步骤中都需要不断地调整参数和优化结果,以获得更加准确和稳定的结果。
使用golang实现
以下是使用 Golang 实现 SfM 的基本步骤:文章来源:https://www.toymoban.com/news/detail-434497.html
- 特征点提取
可以使用 GoCV 库中的 SIFT 特征点提取函数,如下所示:
import (
"gocv.io/x/gocv"
)
func extractFeatures(img gocv.Mat) gocv.KeyPoints {
sift := gocv.NewSIFT()
defer sift.Close()
mask := gocv.NewMat()
defer mask.Close()
descriptors := gocv.NewMat()
defer descriptors.Close()
keypoints := sift.Detect(img, mask)
descriptors = sift.Compute(img, keypoints)
return keypoints
}
- 特征匹配
可以使用 GoCV 库中的 FlannBasedMatcher 特征匹配函数,如下所示:
import (
"gocv.io/x/gocv"
)
func matchFeatures(des1, des2 gocv.Mat) []gocv.DMatch {
matcher := gocv.NewFlannBasedMatcher()
defer matcher.Close()
matches := matcher.KnnMatch(des1, des2, 2)
var goodMatches []gocv.DMatch
for i, match := range matches {
if len(match) < 2 {
continue
}
if match[0].Distance < 0.7*match[1].Distance {
goodMatches = append(goodMatches, matches[i][0])
}
}
return goodMatches
}
- 相机姿态估计
可以使用 GoCV 库中的 SolvePnPRansac 函数,如下所示:
import (
"gocv.io/x/gocv"
)
func estimatePose(keypoints1, keypoints2 []gocv.KeyPoint, matches []gocv.DMatch, cameraMatrix gocv.Mat) (gocv.Mat, gocv.Mat) {
points1 := make([]gocv.Point2f, len(matches))
points2 := make([]gocv.Point3f, len(matches))
for i, match := range matches {
points1[i] = keypoints1[match.QueryIdx].Pt
points2[i] = gocv.Point3f{
X: float32(keypoints2[match.TrainIdx].Pt.X),
Y: float32(keypoints2[match.TrainIdx].Pt.Y),
Z: 0.0,
}
}
rvec := gocv.NewMat()
defer rvec.Close()
tvec := gocv.NewMat()
defer tvec.Close()
inliers := make([]byte, len(matches))
gocv.SolvePnPRansac(points2, points1, cameraMatrix, gocv.NewMat(), &rvec, &tvec, false, 100, 8.0, 0.99, gocv.NewMatVector(), gocv.SolvePnpIterCount, 2000, &inliers)
return rvec, tvec
}
- 三角测量
可以使用 GoCV 库中的 TriangulatePoints 函数,如下所示:
import (
"gocv.io/x/gocv"
)
func triangulatePoints(points1, points2 []gocv.Point2f, cameraMatrix1, cameraMatrix2, distCoeffs1, distCoeffs2 gocv.Mat, rvec1, tvec1, rvec2, tvec2 gocv.Mat) gocv.Mat {
projectionMatrix1 := gocv.NewMat()
defer projectionMatrix1.Close()
gocv.ComposeRT(rvec1, tvec1, &projectionMatrix1)
projectionMatrix1.Multiply(cameraMatrix1, &projectionMatrix1)
projectionMatrix2 := gocv.NewMat()
defer projectionMatrix2.Close()
gocv.ComposeRT(rvec2, tvec2, &projectionMatrix2)
projectionMatrix2.Multiply(cameraMatrix2, &projectionMatrix2)
points4D := gocv.NewMat()
defer points4D.Close()
gocv.TriangulatePoints(projectionMatrix1, projectionMatrix2, points1, points2, &points4D)
points3D := gocv.NewMat()
defer points3D.Close()
gocv.ConvertPointsFromHomogeneous(points4D.T(), &points3D)
return points3D
}
- 点云重建
可以使用 PCL 库中的 PointCloud 函数,如下所示:
import (
"github.com/strawberryfg/pcl"
)
func reconstructPointCloud(points3D []gocv.Point3f) *pcl.PointCloud {
cloud := pcl.NewPointCloud()
defer cloud.Close()
for _, point := range points3D {
pclPoint := pcl.NewPointXYZRGB(point.X, point.Y, point.Z, 255, 255, 255)
cloud.PushBack(pclPoint)
}
return cloud
}
以上这些代码片段可以组合成一个 SfM 算法的基本实现。当然,这只是一个简单的示例,实际应用中可能需要更多的步骤和复杂的实现。文章来源地址https://www.toymoban.com/news/detail-434497.html
到了这里,关于三维重建SfM算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!