[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking

这篇具有很好参考价值的文章主要介绍了[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

这篇文章是今年6月底发布的一篇多目标跟踪(MOT)的屠榜方法,命名为BoT-SORT。作者来自以色列的特拉维夫大学(Tel-Aviv University)。本文简单谈谈我对这个算法的理解,因为也是MOT领域的初学者,如有错误希望各位读者修正,也欢迎大家一起探讨。
PS:文章内部分图片是原创,如需转载请注明出处。

paper: https://arxiv.org/abs/2206.14651
code: https://github.com/NirAharon/BOT-SORT

算法在IDF1和MOTA两个指标上都做到了SOTA:
[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking
在MOT的诸多算法中,可以将其分成两类——即TBD(Tracking by Detection)范式和JDE范式。TBD范式是two-shot的算法,即在保证检测结果准确的基础上实现跟踪算法(比较经典的算法有SORT/DeepSORT/ByteTrack/OC-SORT等等)。JDE范式则是one-shot的算法,旨在一步到位,使用检测的方法同步实现跟踪。这篇文章提出的算法应属于TBD范式,下面是TBD范式的一般流程:
[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking文章首先简单阐述了“SORT-LIKE”系列方法的缺陷,其贡献点也是旨在解决这些问题:
[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking现存主要问题有两个:

  • 由于卡尔曼滤波相机运动两个因素,导致的Bounding box预测不准确;
  • Re-ID任务和检测任务的平衡问题(在跟踪任务中加入Re-ID)

解决方式主要有三个:

  1. 改进KF的状态向量
  2. 使用相机运动补偿方式改进bounding box的预测;
  3. 加入Re-ID的度量,提高跟踪的准确度。

下面分别简单介绍这三个贡献:

1.卡尔曼滤波的改进

[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking改进后的效果:
[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking
这部分的有效性文章通过后面的消融实验来证实,具体KF的推导比较繁琐,我的理解就是把之前使用的宽高比变成了使用宽和高

2. 相机运动补偿

作者认为相机的运动会导致检测框的漂移,即便是静止的相机,目标中人物也可能会因为不规则运动导致目标的振动。
这部分使用opencv中的全局运动估计(GMC)技术来表示背景运动。首先提取图像关键点,再利用稀疏光流进行基于平移的局部异常点抑制的特征跟踪。然后使用RANSAC计算放射变换矩阵,在将预测的边界框从k-1帧坐标变换到其下一阵第k帧的坐标。

效果:
[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking
题外话:这部分相机运动补偿的工作其实StrongSORT(DeepSORT的改进)也有做过,在StrongSORT中使用的是ECC方法

3. IoU&ReID Fusion

为了提取Re-ID特征,采用了FastReID库中BoT 之上的更强的baseline——SBS(2020年提出)+ ResNeSt50作为骨干网络。这部分在StrongSORT中也用了相同的backbone。

在外观分支,具体实现:
[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking余弦相似度和用于匈牙利算法的代价矩阵计算:
[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking

最后我们回顾下这个方法的pipeline,上面描述的三部分就对应pipeline中的以下三部分:
[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking

熟悉MOT算法的朋友肯定一眼就看得出来,整体的流程和ByteTrack是一样的:

  • 第一次联合高分置信度的目标,并作Re-ID和IOU的匹配;
  • 第二次联合低分置信度的目标。

这里借用 ByteTrack的图,看得更明显一些:
[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking第一次关联(关联1)中,ByteTrack的作者也表示过,使用过Re-ID分支作匹配,但效果一般。其中使用的是DeepSort的策略,使用简单的CNN提取RE-ID特征:
[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking
其实在看过文章和一些源码以后,发现BoT-SORT貌似是把ByteTrack中认为无效的工作捡起来重做了。具体一些,是把之前的DeepSORT更换为其更强大的变体——StrongSORT:

[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking

无论是提取re-id特征的backbone部分还是后续使用的相机运动补偿和EMA策略,基本流程都和StrongSORT一致。

最后是实验部分:
[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking
[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking
加入相机运动补偿(CMC)的效果:
[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking

[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking
[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking
总体来说,在我看来其实这篇文章的创新点,或者说能够work的亮点主要在RE-ID上。但在limitation部分作者也说了,加入RE-ID之后速度非常慢,这个我也有进行一些测试,fps只能达到5以内,没办法实时。但是在短时遮挡的情况下,算法可以很好地跟住目标,这点要比ByteTrack/oc-sort这些方法要好。

很多地方语焉不详,文章的翻译和一些解析也可以参考 https://blog.csdn.net/jacke121/article/details/125568958…文章来源地址https://www.toymoban.com/news/detail-434499.html

到了这里,关于[论文阅读] BoT-SORT: Robust Associations Multi-Pedestrian Tracking的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文阅读<Contrastive Learning-based Robust Object Detection under Smoky Conditions>

    论文链接:https://openaccess.thecvf.com/content/CVPR2022W/UG2/papers/Wu_Contrastive_Learning-Based_Robust_Object_Detection_Under_Smoky_Conditions_CVPRW_2022_paper.pdf         目标检测是指有效地找出图像中感兴趣的目标,然后准确地确定它们的类别和位置。近年来,许多优秀的方法被开发出来,以提供强

    2024年02月04日
    浏览(48)
  • 论文阅读《GlueStick: Robust Image Matching by Sticking Points and Lines Together》

    论文地址:https://arxiv.org/abs/2304.02008 源码地址:https://github.com/cvg/GlueStick   针对视角变化时在闭塞、无纹理、重复纹理区域的线段匹配难的问题,本文提出一种新的匹配范式(GlueStick),该方法基于深度图神经网络将点、线的描述符统一到一个框架中,利用点之间的信息将

    2024年02月08日
    浏览(43)
  • 【论文阅读笔记】Local Model Poisoning Attacks to Byzantine-Robust Federated Learning

    个人阅读笔记,如有错误欢迎指出! 会议: Usenix 2020 [1911.11815] Local Model Poisoning Attacks to Byzantine-Robust Federated Learning (arxiv.org) 问题:         模型攻击对拜占庭鲁棒性联邦学习的攻击效果尚未清楚 创新点:         1、基于不同防御方法,设计了具有针对性的模型攻击

    2024年02月10日
    浏览(63)
  • Cross-Drone Transformer Network for Robust Single Object Tracking论文阅读笔记

    无人机在各种应用中得到了广泛使用,例如航拍和军事安全,这得益于它们与固定摄像机相比的高机动性和广阔视野。多 无人机追踪系统可以通过从不同视角收集互补的视频片段 ,为目标提供丰富的信息,特别是当目标在某些视角中被遮挡或消失时。然而,在多无人机视觉

    2024年01月25日
    浏览(60)
  • 【论文阅读】以及部署BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework

    BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework BEVFusion:一个简单而强大的LiDAR-相机融合框架 NeurIPS 2022 多模态传感器融合意味着信息互补、稳定,是自动驾驶感知的重要一环,本文注重工业落地,实际应用 融合方案: 前融合(数据级融合)指通过空间对齐直接融合不同模态的

    2024年02月04日
    浏览(49)
  • 论文阅读 - Social bot detection in the age of ChatGPT: Challenges and opportunities

    论文链接:https://www.researchgate.net/publication/371661341_Social_bot_detection_in_the_age_of_ChatGPT_Challenges_and_opportunities 目录 摘要: 引言 1.1. Background on social bots and their role in society 1.2. The rise of AI-generated chatbots like ChatGPT 1.3. The importance of social bot detection 1.4. Scope and objectives of the paper  2. T

    2024年02月14日
    浏览(51)
  • 低照度增强--论文阅读【《Toward Fast, Flexible, and Robust Low-Light Image Enhancement》】

    介绍一篇最近看的低照度增强方面的论文——自校准照明,文中所给的方法取得了非常不错的效果,值得我们去学习和思考。 论文名称 :Toward Fast, Flexible, and Robust Low-Light Image Enhancement(实现快速、灵活和稳健的低光照图像增强) 论文信息 :由大连理工大学2022年4月发表在

    2024年02月06日
    浏览(56)
  • SAFEFL: MPC-friendly Framework for Private and Robust Federated Learning论文阅读笔记

    SAFEFL,这是一个利用安全多方计算 (MPC) 来评估联邦学习 (FL) 技术在防止隐私推断和中毒攻击方面的有效性和性能的框架。 传统机器学习(ML):集中收集数据-隐私保护问题 privacy-preserving ML (PPML)采用的隐私保护技术:安全多方计算,同态加密(运算成本高) 联邦学习(FL):

    2024年04月22日
    浏览(53)
  • [论文阅读笔记20]MotionTrack: Learning Robust Short-term and Long-term Motions for Multi-Object Tracking

    论文地址: https://arxiv.org/pdf/2303.10404.pdf 代码: 未开源 目前是MOT20的第二名 这篇文章着力于解决 长时 跟踪的问题. 当前大多数方法只能依靠Re-ID特征来进行长时跟踪, 也就是轨迹长期丢失后的再识别. 然而, Re-ID特征并不总是有效的. 尤其是在拥挤和极度遮挡的情况下. 为此, 这篇

    2024年02月16日
    浏览(53)
  • 【论文笔记 】EOT算法:Synthesizing robust adversarial example

    对于基于神经网络的分类器,对抗样本是一种加入了微小扰动的样本,能够让分类器产生错误的判断从而识别失败。传统的二维对抗样本通过打印等方式转移导现实世界中时,在有限的视角下能够保持对抗性。但在复杂多变的实际应用场景中,受光照、视角偏移和相机噪声等

    2024年01月20日
    浏览(62)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包