蒙特卡洛积分、重要性采样、低差异序列

这篇具有很好参考价值的文章主要介绍了蒙特卡洛积分、重要性采样、低差异序列。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

渲染公式

渲染的目标在于计算周围环境的光线有多少从表面像素点反射到相机视口中。要计算总的反射光,每个入射方向的贡献,必须将他们在半球上相加:

为入射光线  与法线  的夹角,为方便计算可以使用法线向量和入射向量(单位化)的乘积表示。

蒙特卡洛积分、重要性采样、低差异序列

 对于基于图像的光照,入射光线可以由环境贴图近似,其中每个纹理像素对应一个入射方向,并忽略遮挡。但是即使采用这种近似,图像中一个像素的光照数值积分对实时渲染而言还是过于昂贵。


蒙特卡洛积分

蒙特卡罗积分方法是一种计算方法。原理是通过大量随机样本,去了解一个系统,进而得到所要计算的值。它非常强大和灵活,又相当简单易懂,容易实现。对于许多问题来说,它往往是最简单的计算方法,也可能是唯一方法。积分公式近似计算如下:

蒙特卡洛积分、重要性采样、低差异序列

为了求解这个积分,我们在 a到 b上采样 N 个随机样本,将它们加在一起并除以样本总数来取平均。其中为概率分布函数,表示概率密度函数,它的含义是特定样本在整个样本集上的发生概率。

当涉及蒙特卡洛积分时,某些样本可能比其他样本具有更高的生成概率。这就是为什么对于任何一般的蒙特卡洛估计,我们都会根据 pdf 将采样值除以或乘以采样概率。到目前为止,我们每次需要估算积分的时候,生成的样本都是均匀分布的,概率完全相等。到目前为止,我们的估计是无偏的,这意味着随着样本数量的不断增加,我们最终将收敛到积分的精确解。

        但是,某些蒙特卡洛估算是有偏的,这意味着生成的样本并不是完全随机的,而是集中于特定的值或方向。这些有偏的蒙特卡洛估算具有更快的收敛速度,它们会以更快的速度收敛到精确解,但是由于其有偏性,可能永远不会收敛到精确解。通常来说,这是一个可以接受的折衷方案,尤其是在计算机图形学中。因为只要结果在视觉上可以接受,解决方案的精确性就不太重要。下文我们将会提到一种(有偏的)重要性采样,其生成的样本偏向特定的方向,在这种情况下,我们会将每个样本乘以或除以相应的 pdf 再求和。

        蒙特卡洛积分在计算机图形学中非常普遍,因为它是一种以高效的离散方式对连续的积分求近似而且非常直观的方法:对任何面积/体积进行采样——例如半球 Ω ——在该面积/体积内生成数量 NN 的随机采样,权衡每个样本对最终结果的贡献并求和。

        蒙特卡洛积分是一个庞大的数学主题,在此不再赘述,但有一点需要提到:生成随机样本的方法也多种多样。默认情况下,每次采样都是我们熟悉的完全(伪)随机,不过利用半随机序列的某些属性,我们可以生成虽然是随机样本但具有一些有趣性质的样本向量。例如,我们可以对一种名为低差异序列的东西进行蒙特卡洛积分,该序列生成的仍然是随机样本,但样本分布更均匀:

蒙特卡洛积分、重要性采样、低差异序列

        当使用低差异序列生成蒙特卡洛样本向量时,该过程称为拟蒙特卡洛积分。拟蒙特卡洛方法具有更快的收敛速度,这使得它对于性能繁重的应用很有用。

        鉴于我们新获得的有关蒙特卡洛(Monte Carlo)和拟蒙特卡洛(Quasi-Monte Carlo)积分的知识,我们可以使用一个有趣的属性来获得更快的收敛速度,这就是重要性采样。我们在前文已经提到过它,但是在镜面反射的情况下,反射的光向量被限制在镜面波瓣中,波瓣的大小取决于表面的粗糙度。既然镜面波瓣外的任何(拟)随机生成的样本与镜面积分无关,因此将样本集中在镜面波瓣内生成是有意义的,但代价是蒙特卡洛估算会产生偏差。

        本质上来说,这就是重要性采样的核心:只在某些区域生成采样向量,该区域围绕微表面半向量,受粗糙度限制。通过将拟蒙特卡洛采样与低差异序列相结合,并使用重要性采样偏置样本向量的方法,我们可以获得很高的收敛速度。因为我们求解的速度更快,所以要达到足够的近似度,我们所需要的样本更少。因此,这套组合方法甚至可以允许图形应用程序实时求解镜面积分,虽然比预计算结果还是要慢得多。


重要性采样

 方差估算:

蒙特卡洛积分、重要性采样、低差异序列

蒙特卡洛积分、重要性采样、低差异序列

蒙特卡洛积分、重要性采样、低差异序列

随着N的增长,方差线性降低。但是估算正比于标准差,标准差以 速度降低,这也是蒙特卡罗方法的一个问题,估算收敛到正确结果的速度比较慢。

通过方差计算公式可知,当为常数时,方差为0,所以概率密度函数曲线形状越接近被积函数 方差越小,但是 很多时候我们并不知道 是什么样子的曲线。然而我们可以通过选择一个形状类似于 形状的 来实现减少方差。

蒙特卡洛积分、重要性采样、低差异序列蒙特卡洛积分、重要性采样、低差异序列蒙特卡洛积分、重要性采样、低差异序列

 当我们使用有限的采样集时,生成均匀的随机方向并不是最佳方法。对于Specular IBL,我们对环境中的有光泽的材质进行积分,那么在高光反射(或者镜面反射)方向周围进行采样最为合理,这是因为大部分反射光都是由这个方向发出的。

蒙特卡洛积分、重要性采样、低差异序列

通过使用概率密度函数pdf 来定义采样的最佳方向,函数峰值代表重要的采样区域,通过这种重要度采样可以减少方差,达到对积分的最佳近似。在接近高光反射方向,这种采样数需要较高的地方, pdf 值会变得较低,相当于提高了采样的数值(间接来说就是提升了次数),相反在采样数较低的地方, pdf 值会比较高,相当于间接减少采样次数 。


低差异序列

使用伪随机数产生随机采样会造成方向分布不均匀,因为伪随机数之间并不了解彼此的信息,可能会产生丛聚,这会导致蒙特卡罗积分方程式中,预估的准确性较差,收敛速度慢。通过使用低差异序列替换伪随机数,我们可以提高准确度,它本质上可以更好地保证分配的方向。使用Low-Discrepancy Sequence来生成蒙特卡罗采样向量,这个过程被称为Quasi-Monte Carlo积分。Quasi-Monte Carlo方法有更快的收敛速度,使他能够胜任大型复杂的应用。

蒙特卡洛积分、重要性采样、低差异序列

当使用低差异序列生成蒙特卡洛样本向量时,该过程称为拟蒙特卡洛积分。拟蒙特卡洛方法具有更快的收敛速度,这使得它对于性能繁重的应用很有用。

我们将使用重要性采样来预计算间接反射方程的镜面反射部分,该采样基于拟蒙特卡洛方法给出了随机地低差异序列。我们将使用的序列称之为Hammersley序列。Hammersley序列是基于Van Der Corpus 序列,该序列是把十进制数字的二进制表示镜像翻转到小数点右边得到。

float RadicalInverse_VdC(uint bits) 
{
    bits = (bits << 16u) | (bits >> 16u);
    bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
    bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
    bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
    bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
    return float(bits) * 2.3283064365386963e-10; // / 0x100000000
}
// ----------------------------------------------------------------------------
vec2 Hammersley(uint i, uint N)
{
    return vec2(float(i)/float(N), RadicalInverse_VdC(i));
}  

GLSL 的 Hammersley 函数可以获取大小为 N 的样本集中的低差异样本 i。

无需位运算的 Hammersley 序列

并非所有 OpenGL 相关驱动程序都支持位运算符(例如WebGL和OpenGL ES 2.0),在这种情况下,你可能需要不依赖位运算符的替代版本 Van Der Corpus序列:

float VanDerCorpus(uint n, uint base)
{
    float invBase = 1.0 / float(base);
    float denom   = 1.0;
    float result  = 0.0;

    for(uint i = 0u; i < 32u; ++i)
    {
        if(n > 0u)
        {
            denom   = mod(float(n), 2.0);
            result += denom * invBase;
            invBase = invBase / 2.0;
            n       = uint(float(n) / 2.0);
        }
    }

    return result;
}
// ----------------------------------------------------------------------------
vec2 HammersleyNoBitOps(uint i, uint N)
{
    return vec2(float(i)/float(N), VanDerCorpus(i, 2u));
}

请注意,由于旧硬件中的 GLSL 循环限制,该序列循环遍历了所有可能的 32 位,性能略差。但是如果你没有位运算符可用的话可以考虑它,它可以在所有硬件上运行。文章来源地址https://www.toymoban.com/news/detail-434826.html

到了这里,关于蒙特卡洛积分、重要性采样、低差异序列的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模-蒙特卡洛模拟

    2024年02月15日
    浏览(52)
  • 蒙特卡洛树搜索(MCTS)详解

    蒙特卡洛树搜索是一种经典的树搜索算法,名镇一时的 AlphaGo 的技术背景就是结合蒙特卡洛树搜索和深度策略价值网络,因此击败了当时的围棋世界冠军。它对于求解这种大规模搜索空间的博弈问题极其有效,因为它的核心思想是 把资源放在更值得搜索的分枝上 ,即 算力集

    2024年01月18日
    浏览(56)
  • 强化学习:蒙特卡洛方法(MC)

       以抛硬币为例,将结果(正面朝上或反面朝上)表示为作为随机变量 X X X ,如果正面朝上则 X = + 1 X=+1 X = + 1 ,如果反面朝上,则 X = − 1 X=-1 X = − 1 ,现在要计算 E [ X ] E[X] E [ X ] 。    我们通常很容易想到直接用定义来计算,因为我们知道正面朝上和反面朝上的概率都是

    2024年02月08日
    浏览(44)
  • 【机器学习】强化学习(三)蒙特卡洛算法

    策略迭代算法和价值迭代算法为什么可以得到理论上的最优解,在实际问题中使用价值有限? 无模型算法 三、蒙特卡洛算法 蒙特卡洛(Monte Carlo)方法是一种基于样本的强化学习算法,它通过执行和学习代理(也就是我们编程的AI)环境交互的样本路径来学习。它不需要初始知

    2024年01月19日
    浏览(54)
  • 蒙特卡洛方法的数学基础-1

    蒙特卡洛方法的数学基础-1 Bayes 公式 常用分布 Binominal Distribution Poisson Distribution Gaussian Distribution  Exponential Distribution Uniform Distribution 大数定理 均匀概率分布随机地取 N 个数 x i , 函数值之和的算术平均收敛于函数的期望值 算术平均收敛于真值 中心极限定理 n个相互独立分布

    2024年02月07日
    浏览(53)
  • 多数问题求解之蒙特卡洛与分治法

    多数问题(Majority Problem)是一个有多种求解方法的经典问题,其问题定义如下: 给定一个大小为 n n n 的数组,找出其中出现次数超过 n / 2 n/2 n /2 的元素 例如:当输入数组为 [ 5 , 3 , 5 , 2 , 3 , 5 , 5 ] [5, 3, 5, 2, 3, 5, 5] [ 5 , 3 , 5 , 2 , 3 , 5 , 5 ] ,则 5 5 5 是多数(majority)。 本文将

    2024年03月14日
    浏览(44)
  • 蒙特卡洛方法的收敛性和误差

    目录 1.收敛性 2.误差 3.减少方差的各种技巧 4.效率 5.优缺点 蒙特卡罗方法作为一种计算方法,其收敛性与误差是普遍关心的一个重要问题。由此可以总结出蒙特卡洛方法的优缺点。

    2024年02月06日
    浏览(38)
  • 16. 蒙特卡洛强化学习基本概念与算法框架

    蒙特卡洛强化学习(简称MC强化学习)是一种 无模型 强化学习算法,该算法无需知道马尔科夫决策环境模型,即不需要提前获得立即回报期望矩阵R(维度为(nS,nA))、状态转移概率数组P(维度为(nA,nS,nS)),而是通过与环境的反复交互,使用统计学方法,利用交互数据直接进行

    2024年01月21日
    浏览(45)
  • 【Python数学建模常用算法代码——蒙特卡洛模型】

    蒙特卡洛方法的理论支撑其实是概率论或统计学中的大数定律。基本原理简单描述是先大量模拟,然后计算一个事件发生的次数,再通过这个发生次数除以总模拟次数,得到想要的结果。下面我们以三个经典的小实验来学习下蒙特卡洛算法思想。 实验原理 在正方形内部有一

    2024年02月02日
    浏览(50)
  • C# 随机法求解线性规划问题 蒙特卡洛

    线性规划问题: max=3 x1+2 x2 x1+2 x2=5 2 x1+x2=4 4 x1+3 x2=9 x1=0 x2=0 正确的结果:x1=1.5; x2=1, max z=6.5

    2024年02月13日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包