峰值检测电路汇总

这篇具有很好参考价值的文章主要介绍了峰值检测电路汇总。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、峰值检测电路定义

  峰值检测电路(PKD,Peak Detector)的作用是对输入信号的峰值进行提取,产生输出Vo = Vpeak,为了实现这样的目标,电路输出值会一直保持,直到一个新的更大的峰值出现或电路复位。
  峰值检测电路在AGC(自动增益控制)电路和传感器最值求取电路中广泛应用,自己平时一般作为程控增益放大器倍数选择的判断依据。有的同学喜欢用AD637等有效值芯片作为程控增益放大器的判据,主要是因为集成的方便,但个人认为是不合理的,因为有效值和信号的正负峰值并没有必然联系;其次,实际应用中这类芯片太贵了。当然,像电子设计竞赛是可以的,因为测试信号总是正弦波,方波等。

二、峰值检测电路原理

  顾名思义,峰值检测器(PKD,Peak Detector)(本文默认以正峰值检测为例)就是要对信号的峰值进行采集并保持。其效果如下如(MS画图工具绘制):
峰值检测电路汇总
  根据这样的要求,我们可以用一个二极管和电容器组成最简单的峰值检测器。如下图(TINA TI 7.0绘制):
峰值检测电路汇总
  这时候我们可以选择用面包板搭一个电路,接上信号源示波器观察结果,但在这之前利用仿真软件TINA TI进行简单验证会节省很多时间。通过简单仿真(输入正弦信号5kHz,2Vpp),我们发现仅仅一个二极管和电容器组成的峰值检测器可以工作,但性能并不是很理想,对1nF的电容器,100ms后达到稳定的峰值,误差达10%。而且,由于没有输入输出的缓冲,在实际应用中,电容器中的电荷会被其他部分电路负载消耗,造成峰值检测器无法保持信号峰值电压。
峰值检测电路汇总
   既然要改进,首先要分析不足。上图检测的误差主要来自与二极管的正向导通电压降,因此我们可以用模电书上说的“超级二极管”代替简单二极管(TINA TI 7.0绘制):
峰值检测电路汇总
   从仿真结果来看,同等测试条件下,检测误差大大减小。但我们知道,超级二极管有一个缺点,就是Vi从负电压变成正电压的过程中,为了闭合有二极管的负反馈回路,运放要结束负饱和状态,输出电压要从负饱和电压值一直到(Vi+V二极管)。这个过程需要花费时间,如果在这个过程,输入发生变化,输出就会出现失真。
   因此,我们需要在电路中加入防止负饱和的措施,也就是说,我们输入部分的处理环节要能够尽量跟随输入信号的电压,并提供一个尽可能理想的二极管,同时能够提供有效的输入缓冲。一个经典的电路是通过在输入和输出间增加一个二极管,这有点类似于电压钳位(TINA TI 7.0绘制):
峰值检测电路汇总
   经过以上的简单描述,其实我们已经可以将峰值检测器分成几个模块:
   (1)模拟峰值存储器,即电容器。
   (2)单向电流开关,即二极管。
   (3)输入输出缓冲隔离,即运算放大器。
   (4)电容放电复位开关(这部分非必须,如:如果电容值选取合适,两次采样时间间隔较大)。

3、几种峰值检测电路

   采用二极管和电容器组成的峰值检测电路有多种实现方式和电路形式,在TI等公司的一下文献中,我们可以查到不少。就自己个人实验的结果而言,二极管、电容、放大器组成的峰值检测器有效工作频率范围在500kHz一下,对100mVpp以上的输入信号检测误差可达到3%以内,后文中3.2的曲线图能较有代表性地反映这类峰值检测器的性能。

3.1分立二极管电容型

   TI公司的Difet 静电计级运算放大器OPA128的DATASHEET里提供了一个很好用的峰值检测器:
峰值检测电路汇总
   TINA TI的仿真结果如下:
峰值检测电路汇总
   值得一提的是,该图有几个用心之处:
   (1)采用FET运放提高直流特性,减小偏置电流OPA128的偏置电流低至75fA。
   (2)将场效应管当二极管用,可以有效减小反向电流同时增加第一个运放的输出驱动力。
   (3)小电容应该是防止自激的。实际应用中可以用TL082双运放和1N4148来代替场效应管,性能价格比较高。

3.2无二极管型

峰值检测电路汇总
   该图使用TINA TI 7.0和Multisim10.1均未仿真成功,但电路应该是没有问题的,只是性能得看实验。 重点一提的是EDN英文版上有篇文章(见参考文献)提供了一种非常棒的PKD:
峰值检测电路汇总
   性能如下:
峰值检测电路汇总
   该图用TINA未能仿真成功,Mutisim 12仿真成功:
峰值检测电路汇总
   性能如下:
峰值检测电路汇总

3.3集成峰值检测电路

   ADI公司有一款集成的PKD——PKD01,本质也是二极管加电容的结构,性能不详。

3.4其他结构峰值检测电路

   在高速的环境下,二极管和电容结构的电路就无法适应了,作者见过FPGA+DAC+高速比较器组成的峰值检测器,原理很简单,就是将DAC输出和输入信号作比较,FPGA负责DAC电压输出控制和比较器输出检测。

四、检查电路实例

4.1基本的峰值检测电路

  本实验以峰值检测器为例, 说明可利用反馈环改进非线性的方法。峰值检测器是用来检测交流电压峰值的电路, 最简单的峰值检测器依据半波整流原理构成电路。如图下所示, 交流电源在正半周的一段时间内, 通过二极管对电容充电, 使电容上的电压逐渐趋近于峰值电压。只要 RC 足够大,可以认为其输出的直流电压数值上十分接近于交流电压的峰值。
峰值检测电路汇总
  这种简单电路的工作过程是, 在交流电压的每一周期中, 可分为电容充电和放电两个过程。在交流电压的作用下, 在正半周的峰值附近一段时间内, 通过二极管对电容 C 充电,而在其它时段电容 C 上的电压将对电阻 R 放电。当然,当外界交流电压刚接上时,需要经历多个周期, 多次充电, 才能使输出电压接近峰值。但是, 困难在于二极管是非线性元(器)件, 它的特性曲线如实图下所示。当交流电压较小时,检测得的直流电压往往偏离其峰值较多。
峰值检测电路汇总
  这里的泄放电阻R,是指与 C 并联的电阻、下一级的输入电阻、二极管的反向漏电阻、以及电容及电路板的漏电等效电阻。不难想到, 放电是不能完全避免的。同时, 适当的放电也是必要的。特别是当输入电压变小时, 通过放电才能使输出电压再次对应于输入电压的峰值。实际上, 检测器的输出电压大小与峰值电压的差别与泄放电流有关。仅当泄放电流可不计时, 输出电压才可认为是输入电压的峰值。用于检测仪器中的峰值检测器要求有较高的精度。检测仪器通常 R 值很大,且允许当输入交流电压取去后可有较长的时间检波输出才恢复到零。可以用较小的电容,从而使峰值电压建立的时间较短。
  本实验的目的, 在于研究如何用运算放大器改进峰值检测器, 进一步了解运算放大器之应用。

4.2峰值检测电路的改进

  为了避免次级输入电阻的影响, 可在检测器的输出端加一级跟随器(高输入阻抗)作为隔离级。
峰值检测电路汇总
  也可以按需要加一可调的泄放电阻。如果允许电路有很长的放电时间, 也可以不用外加泄放电阻。这种电路可以有效地隔离次级的影响, 且跟随器的输出电压(Vo)可视为与电容上的电压相等。
  电路中的二极管, 仅在 Vi-Vo > 0 时才导通, 使电容C充电。这时, 二极管上的电压为(Vi-Vo)。为使在(Vi-Vo)很小时也能有足够的充电速度, 可将(Vi-Vo)经过放大, 再作用于二极管。按照这一设想, 可在检测器前加一级比较放大器。
峰值检测电路汇总
  在分析时常认为运算放大器失偏电压为理想值 0V。比较放大器是开环的差动放大器,它可以有很高的增益, 只要 Vi 略大于 Vo, 就可以输出很大的电压驱动 D1 对电容充电。例如运算放大器的增益为 100dB量级, 只需 Vi 比 Vo 大 0.02mV, 就可以输出 2V 的正向电压,显然, 加速了电容的充电过程,直至使 Vo 等于 Vi 的峰值为止。实际工作中, 决定 Vo 与 Vi 有差别的一个重要因素, 将是放大器输入端的失调电压。当然, 放大器也应有足够的带宽,以适应要求检测的交流电压的频率范围。
  在 Vi-Vo < 0 时, 比较放大器的输出电压接近于负电源电压, 使 D1 上有较大的反向电压, D1 就会有一定的反向泄漏电流。为抑制 D1 的反向电流, 应使 D1 的正极在反向时的电压, 只略低于 Vo。为此, 在比较放大器(A2)与 D1 之间增设二极管 D2 和电阻 R2。
峰值检测电路汇总
  在 Vi > Vo 时, A2 输出较大的正向电压, 使 D2 与 D1 导通对电容充电。
  在 Vi < Vo 时, A2 输出的反向电压使 D2 关断。这时, D2 的负极(D1 的正极)通过 R2 联于 A1 的输出端, 使 R2 一端的电压(对地)为 Vo。如图所示, 流过 D2 的反向电流通过 R2, 因而使 D2 的负极(D1 的正极)上和电容上的电压得以保持。
  通常 R2 为数百kW的电阻, 例如在实图下中 R2 为 560kW。若 D2 的反向电流为 0.2mA, 则 R2 上的电压为 0.11V, 即 D1 上的反向电压为 0.11V。由此可见, D2 和 R2 有效的抑制了D1的反向电流, 其作用相当于增大了检测电路的泄放电阻。
  还需注意, D2 还有极间电容 C2, 它与 R2 组成阻容耦合电路。以上的分析略去了 C2 的作用,实际上是假定输入信号的频率满足:W << 1/(R2C2)。
  因此, 除了选用级间电容较小的二极管之外, 还应参照上式选择 R2。
  上图是改进的峰值检测器的原理图。该电路还有一个实际问题。在输入信号的每周期的大部分时间中处于 Vi < Vo 的状态, 因而 A2 输出端的电压几乎等于负电源电压, A2 的中间级和输出级的某些管子, 必处于深饱和和深截止状态。仅当 Vi 在峰值附近的一小段时间中, A2 才可能在线性区中, A2 的某些管子应从深饱和状态(或深截止状态)转向线性区(放大区)中的状态。管子的这种状态的转换需要经历一段时间才能完成。这种效应限制了输入信号频率, 亦即限制了检测速度。
  为了改善电路的速度, 用非线性元(器)件 D3, 将比较放大器组成非线性反馈的放大器。在 Vi > Vo 时,Vo2 高于 Vo, D3 处于反偏置状态(不导通),A2 仍可视为无反馈的高增益电路; 在 Vi < Vo 时,Vo2 低于 Vo, D3 处于正偏置状态(导通)呈现为低阻抗, A2 可视为有强反馈的低增益放大器。若 D3 的正向等效电阻为 RD3, 在 rD3 << R3 时, 只要 R3 充分大,保持 Vo 值变化较小,对于输入信号来说, 该电路相当于有偏置的跟随器。 峰值检测电路汇总
  若 rD3 可不计则输出电压为:Vo2 ≌ Vi -Vo - VD3。
   Vo2 的最低值为 Vo2min ≌ -2VP - VD3。
  式中 Vp 是输入电压 Vi 的峰值。在设计电路时, 若使 Vi 的最大峰值小于 A2 的负向摆幅之半,则 A2 就可以保持在线性区工作。当然,D3的 反向电阻应尽可能大,以保证 Vo2 为正值时不致通过 D3 泄漏至 Vo。
  综上所述, 较完善的峰值检测器电路如实图下所示。
峰值检测电路汇总
  参数选择:
  按照上面的分析, R3 应满足: RD3 >> R3 >> rD3 ,RD3 是 D3 的反向等效电阻。因 rD3 常在 100W 量级, RD3 常在 1000kW 量级或更大, 故 R3 可选为 10kW 量级。
  整个电路,A2是输入缓冲,其输入端包含A1的输出反馈,用于实现比较功能“Vi高于Vo就打开下级电路”。A1是输出缓冲。
  注意:
  1、只要 R3 充分大,就能保持 Vo 值变化较小。
   2、R2用于减少D2的反相泄露电阻。文章来源地址https://www.toymoban.com/news/detail-434855.html

到了这里,关于峰值检测电路汇总的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于FPGA的ECG心电信号峰值检测和心率计算,包括testbench测试文件和ECG数据转换为coe文件程序

    目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 vivado2019.2 matlab2022a         心电图(ECG)是一种广泛应用于医疗诊断的技术,用于监测心脏的电活动。随着医疗技术的发展,基于FPGA(现场可编程门阵列)的ECG信号处理系统

    2024年02月10日
    浏览(48)
  • (电路汇总)ACDC电源电路 优缺点分析

    1.ACDC模块 2.工频变压器降压电路 3.阻容降压电路 4.超高压buck 5.单端反激开关电源 6.其他拓扑开关电源         各种拓扑的最终目的是把干扰做小,电流做大,电压范围做宽 引用: https://gitee.com/qylhhxx/common-power-circuit.git

    2024年02月11日
    浏览(65)
  • 数字电路思考题汇总

    数字逻辑在电路中如何实现?逻辑电平与电压值有什么关系? 数字逻辑在电路中是通过开关的开闭或者电平高低来实现。而逻辑电平是对应一定范围的电压值;如在课本中举例的 CMOS器件:0 - 1.5V对应低电平,3.5 - 5V对应高电平。 问题1: 逻辑函数的表示方法都有哪些? 1、逻

    2024年02月06日
    浏览(48)
  • lora芯片PCB电路板影响接受信号的原因汇总

    Lora 芯片的 PCB 板受力接收信号有问题可能有以下原因: 电路板设计问题:电路板的设计不合理可能导致信号接收出现问题。例如,电路板的天线布局、走线可能影响到信号的接收效果。在设计电路板时,需要考虑到天线的布局、走线、接地等细节,以确保信号接收的稳定性

    2024年02月12日
    浏览(45)
  • 电流检测电路

    2022/10/15 该芯片有两种用法,一种为采样电阻接在电源侧(即电流先流经采样电阻后流经负载),另一种为采样电阻接在GND侧(即电流先流经负载后流经采样电阻),具体区别和使用场景可以查阅数据手册 将一阻值很小的采样电阻串联到电路的主电源线上,当电流流经该采样

    2024年02月08日
    浏览(38)
  • OTG硬件检测电路

    OTG是\\\"On The Go\\\"的英文缩写,字面上可以理解为“安上即可用”。USB传输是主从结构,一切USB传输都有Host发起。比如在开发板上可以插入U盘,这时开发板作为USB Host。但是开发板要跟PC通信,开发板就要作为USB Device。开发板要作为USB Host、USB Device两种角色,可以使用OTG插口:它

    2023年04月15日
    浏览(20)
  • 边沿检测电路

    目录 同步信号的边沿检测 异步信号的边沿检测         所谓的边沿检测(又叫边沿提取),就是检测输入信号的上升沿和下降沿。在设计数字系统时,边沿检测是一种很重要的思想,实际编程时用的最多的时序电路应该就是边沿检测电路和分频电路了。         在

    2024年02月06日
    浏览(29)
  • 简易温度检测器电路原理

    在日常生活中,对温度的及时检测能够减免火灾的发生,所以今天就说说温度检测器。 实际功能 在常温下显示数字0,随着温度的升高,数码管逐步显示1、3、8,分别代表三档温度,并且在显示8的时候,LED灯开始闪烁,代表温度过高而报警,当温度下降时,数码管的显示状态

    2024年02月09日
    浏览(43)
  • 集成电路安全(二):硬件木马检测

    之前在一篇文章《硬件安全一点点概要》简单介绍了一下硬件的安全机制,这里通过一些论文和书籍资料,对这个部分进行进一步的展开讲解。 随着信息技术的出现,网络已经深入到人们的日常生活并发挥着越来越重要的作用。在这种形势下,网络攻击风险也与日俱增。自

    2024年02月10日
    浏览(55)
  • 【模电课程设计】---水位检测电路的设计

    主要内容     用二极管的基本特性、三极管的基本特性、运算放大器、热敏电阻(或可调电阻)等知识,设计相应的模拟电路,实现一款直流稳压电源、水位检测电路的设计. (1)设计并制作一个输入电压为 15V(输入电压不分极性),能输出±5V 电压的直流稳压电源; (2用 LED1 灯

    2024年02月06日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包