题目
网络购物作为一种重要的消费方式,带动着快递服务需求飞速增长,为我国经济发展做出了重要贡献。准确地预测快递运输需求数量对于快递公司布局仓库站点、节约存储成本、规划运输线路等具有重要的意义。附件1、附件2、附件3为国内某快递公司记录的部分城市之间的快递运输数据,包括发货日期、发货城市以及收货城市(城市名已用字母代替,剔除了6月、11月、12月的数据)。请依据附件数据,建立数学模型,完成以下问题:
问题1:附件1为该快递公司记录的2018年4月19日—2019年4月17日的站点城市之间(发货城市-收货城市)的快递运输数据,请从收货量、发货量、快递数量增长/减少趋势、相关性等多角度考虑,建立数学模型,对各站点城市的重要程度进行综合排序,并给出重要程度排名前5的站点城市名称,将结果填入表1。
**问题2:**请利用附件1数据,建立数学模型,预测2019年4月18日和2019年4月19日各“发货-收货”站点城市之间快递运输数量,以及当日所有“发货-收货”站点城市之间的总快递运输数量,并在表2中填入指定的站点城市之间的快递运输数量,以及当日所有“发货-收货”站点城市之间的总快递运输数量。
问题3:附件2为该快递公司记录的2020年4月28日—2023年4月27日的快递运输数量。由于受到突发事件影响,部分城市之间快递线路无法正常运输,导致站点城市之间无法正常发货或收货(无数据表示无法正常收发货,0表示无发货需求)。请利用附件2数据,建立数学模型,预测2023年4月28日和2023年4月29日可正常“发货-收货”的站点城市对(发货城市-收货城市),并判断表3中指定的站点城市对是否能正常发货,如果能正常发货,给出对应的快递运输数量,并将结果填入表3。
问题4:图1给出了所有站点城市间的铁路运输网络,铁路运输成本由以下公式计算:成本=固定成本×【1+(实际装货量/额定装货量)^3】。在本题中,假设实际装货量允许超过额定装货量。所有铁路的固定成本、额定装货量在附件3中给出。在运输快递时,要求每个“发货-收货”站点城市对之间使用的路径数不超过5条,请建立数学模型,给出该快递公司成本最低的运输方案。利用附件2和附件3的数据,计算该公司2023年4月23—27日每日的最低运输成本,填入表4。
问题5:通常情况下,快递需求由两部分组成,一部分为固定需求,这部分需求来源于日常必要的网购消费(一般不能简单的认定为快递需求历史数据的最小值,通常小于需求的最小值);另一部分为非固定需求,这部分需求通常有较大波动,受时间等因素的影响较大。假设在同一季度中,同一“发货-收货”站点城市对的固定需求为一确定常数(以下简称为固定需求常数);同一“发货-收货”站点城市对的非固定需求服从某概率分布(该分布的均值和标准差分别称为非固定需求均值、非固定需求标准差)。请利用附件2中的数据,不考虑已剔除数据、无发货需求数据、无法正常发货数据,解决以下问题。
(1) 建立数学模型,按季度估计固定需求常数,并验证其准确性。将指定季度、指定“发货-收货”站点城市对的固定需求常数,以及当季度所有“发货-收货”城市对的固定需求常数总和,填入表5。
(2) 给出非固定需求概率分布估计方法,并将指定季度、指定“发货-收货”站点城市对的非固定需求均值、标准差,以及当季度所有“发货-收货”城市对的非固定需求均值总和、非固定需求标准差总和,填入表5。
问题一思路
计算各城市的收发货量,并构建指标矩阵。然后对指标矩阵进行归一化处理,计算熵值,再计算权重。最后,根据权重计算综合评分,并按重要程度降序排序,输出排名前5的城市。
- 熵权toppsis进行评价
- 归一化
问题二思路
使用时间序列算法进行预测即可,相关算法很多。
- ARIMA
- LSTM
- 等
问题三思路
同问题二,依然是时间序列。
- 使用了滑动窗口方法来估计未来可正常运行的城市站点之间的快递运输数量
问题四思路
这是一个图论+最优问题,可以用代码把运输路线画出来:
接着使用图论中的最短路径算法来找到成本最低的运输方案。这里使用Dijkstra算法计算两个城市之间的最短路径。
- 基于图论的最短路径算法(Dijkstra算法)来寻找最低成本的运输方案
- 计算了最低运输成本,考虑了铁路运输的成本公式
问题五思路
首先,我们需要估计固定需求常数。然后,我们需要估计非固定需求的概率分布。文章来源:https://www.toymoban.com/news/detail-435016.html
- 使用了分位数方法(25%分位数)来估计固定需求常数
- 计算了非固定需求的均值和标准差,以估计非固定需求的概率分布
部分结果参考:
文章来源地址https://www.toymoban.com/news/detail-435016.html
到了这里,关于2023五一杯B题:快递需求分析问题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!