KNN中不同距离度量对比和介绍

这篇具有很好参考价值的文章主要介绍了KNN中不同距离度量对比和介绍。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

k近邻算法KNN是一种简单而强大的算法,可用于分类和回归任务。他实现简单,主要依赖不同的距离度量来判断向量间的区别,但是有很多距离度量可以使用,所以本文演示了KNN与三种不同距离度量(Euclidean、Minkowski和Manhattan)的使用。

KNN中不同距离度量对比和介绍

KNN算法概述

KNN是一种惰性、基于实例的算法。它的工作原理是将新样本的特征与数据集中现有样本的特征进行比较。然后算法选择最接近的k个样本,其中k是用户定义的参数。新样本的输出是基于“k”最近样本的多数类(用于分类)或平均值(用于回归)确定的。

有很多距离度量的算法,我们这里选取3个最常用度量的算法来进行演示:

1、欧氏距离 Euclidean Distance

 def euclidean_distance(x1, x2):
     return math.sqrt(np.sum((x1 - x2)**2))

euclidean_distance函数计算多维空间中两点(x1和x2)之间的欧氏距离,函数的工作原理如下:

  • 从x1元素中减去x2,得到对应坐标之间的差值。
  • 使用**2运算将差值平方。
  • 使用np.sum()对差的平方求和。
  • 使用math.sqrt()取总和的平方根。

欧几里得距离是欧几里得空间中两点之间的直线距离。通过计算欧几里得距离,可以识别给定样本的最近邻居,并根据邻居的多数类(用于分类)或平均值(用于回归)进行预测。在处理连续的实值特征时,使用欧几里得距离很有帮助,因为它提供了一种直观的相似性度量。

2、曼哈顿距离 Manhattan Distance

两点坐标的绝对差值之和。

 def manhattan_distance(x1, x2):
     return np.sum(np.abs(x1 - x2))

Manhattan _distance函数计算多维空间中两点(x1和x2)之间的曼哈顿距离,函数的工作原理如下:

  • 用np计算x1和x2对应坐标的绝对差值。Abs (x1 - x2)
  • 使用np.sum()对绝对差进行求和。

曼哈顿距离,也称为L1距离或出租车距离,是两点坐标的绝对差值之和。它代表了当运动被限制为网格状结构时,点之间的最短路径,类似于在城市街道上行驶的出租车。

在数据特征具有不同尺度的情况下,或者当问题域的网格状结构使其成为更合适的相似性度量时,使用曼哈顿距离可能会有所帮助。曼哈顿距离可以根据样本的特征来衡量样本之间的相似性或差异性。

与欧几里得距离相比,曼哈顿距离对异常值的敏感性较低,因为它没有对差异进行平方。这可以使它更适合于某些数据集或异常值的存在可能对模型的性能产生重大影响的问题。

3、闵可夫斯基距离 Minkowski Distance

它是欧几里得距离和曼哈顿距离的一般化的表现形式,使用p进行参数化。当p=2时,它变成欧氏距离,当p=1时,它变成曼哈顿距离。

 def minkowski_distance(x1, x2, p):
     return np.power(np.sum(np.power(np.abs(x1 - x2), p)), 1/p)

minkowski_distance函数计算多维空间中两点(x1和x2)之间的闵可夫斯基距离。

当你想要控制单个特征的差异对整体距离的影响时,使用闵可夫斯基距离会很有帮助。通过改变p值,可以调整距离度量对特征值或大或小差异的灵敏度,使其更适合特定的问题域或数据集。

闵可夫斯基距离可以根据样本的特征来衡量样本之间的相似性或不相似性。该算法通过计算适当p值的闵可夫斯基距离,识别出给定样本的最近邻居,并根据邻居的多数类(用于分类)或平均值(用于回归)进行预测。

KNN 算法的代码实现

因为KNN算法的原理很简单,所以我们这里直接使用Python实现,这样也可以对算法有一个更好的理解:

 defknn_euclidean_distance(X_train, y_train, X_test, k):
     # List to store the predicted labels for the test set
     y_pred= []
     
     # Iterate over each point in the test set
     foriinrange(len(X_test)):
         distances= []
         # Iterate over each point in the training set
         forjinrange(len(X_train)):
             # Calculate the distance between the two points using the Euclidean distance metric
             dist=euclidean_distance(X_test[i], X_train[j])
             distances.append((dist, y_train[j]))
         
         # Sort the distances list by distance (ascending order)
         distances.sort()
         
         # Get the k nearest neighbors
         neighbors=distances[:k]
         
         # Count the votes for each class
         counts= {}
         forneighborinneighbors:
             label=neighbor[1]
             iflabelincounts:
                 counts[label] +=1
             else:
                 counts[label] =1
         
         # Get the class with the most votes
         max_count=max(counts, key=counts.get)
         y_pred.append(max_count)
     
     returny_pred

这个’ knn_euclidean_distance ‘函数对于解决分类问题很有用,因为它可以根据’ k '个最近邻居中的大多数类进行预测。该函数使用欧几里得距离作为相似性度量,可以识别测试集中每个数据点的最近邻居,并相应地预测它们的标签。我们实现的代码提供了一种显式的方法来计算距离、选择邻居,并根据邻居的投票做出预测。

在使用曼哈顿距离时,KNN算法与欧氏距离保持一致,只需要将距离计算函数euclidean_distance修改为manhattan_distance。而闵可夫斯基距离则需要多加一个参数p,实现代码如下:

 defknn_minkowski_distance(X_train, y_train, X_test, k, p):
     # List to store the predicted labels for the test set
     y_pred= []
     
     # Iterate over each point in the test set
     foriinrange(len(X_test)):
         distances= []
         # Iterate over each point in the training set
         forjinrange(len(X_train)):
             # Calculate the distance between the two points using the Minkowski distance metric
             dist=minkowski_distance(X_test[i], X_train[j], p)
             distances.append((dist, y_train[j]))
         
         # Sort the distances list by distance (ascending order)
         distances.sort()
         
         # Get the k nearest neighbors
         neighbors=distances[:k]
         
         # Count the votes for each class
         counts= {}
         forneighborinneighbors:
             label=neighbor[1]
             iflabelincounts:
                 counts[label] +=1
             else:
                 counts[label] =1
         
         # Get the class with the most votes
         max_count=max(counts, key=counts.get)
         y_pred.append(max_count)
     
     returny_pred

距离度量对比

我使用的数据集是乳腺癌数据集,可以在kaggle上直接下载

这个数据集是机器学习和数据挖掘中广泛使用的基准数据集,用于二元分类任务。它是由威廉·h·沃尔伯格(William H. Wolberg)博士及其合作者在20世纪90年代从麦迪逊的威斯康星大学医院收集的。该数据集可通过UCI机器学习存储库公开获取。

Breast Cancer Wisconsin数据集包含569个实例,每个实例有32个属性。这些属性是:

ID number:每个样本的唯一标识符。

Diagnosis:目标变量有两个可能的值——“M”(恶性)和“B”(良性)。

剩下的是30个从乳腺肿块的细针抽吸(FNA)的数字化图像中计算出来的特征。它们描述了图像中细胞核的特征。对每个细胞核计算每个特征,然后求平均值,得到10个实值特征:

  • Radius:从中心到周边点的平均距离。
  • Texture:灰度值的标准偏差。
  • Perimeter:细胞核的周长。
  • Area:细胞核的面积。
  • Smoothness:半径长度的局部变化。
  • Compactness:周长²/面积- 1.0。
  • Concavity:轮廓中凹部分的严重程度。
  • Concave points:轮廓的凹部分的数目。
  • Symmetry:细胞核的对称性。
  • Fractal dimension:“Coastline approximation”- 1

对每张图像计算这十个特征的平均值、标准误差和最小或最大值(三个最大值的平均值),总共得到30个特征。数据集不包含任何缺失的属性值。

由于数据集包含30个特征,我们需要对数据集进行特征选择。这种方法的主要目的是通过选择与目标变量具有强线性关系的较小的特征子集来降低数据集的维数。通过选择高相关性的特征,目的是保持模型的预测能力,同时减少使用的特征数量,潜在地提高模型的性能和可解释性。这里需要注意的是,该方法只考虑特征与目标变量之间的线性关系,如果底层关系是非线性的,或者特征之间存在重要的交互作用,则该方法可能无效。

读取数据并计算相关系数:

 df=pd.read_csv('/kaggle/input/breast-cancer-wisconsin-data/data.csv')
 corr=df.corr()
 corr_threshold=0.6
 selected_features=corr.index[np.abs(corr['diagnosis']) >=corr_threshold]
 new_cancer_data=df[selected_features]

训练代码:

 X_train_np=np.array(X_train) 
 X_test_np=np.array(X_test)
 
 # Convert y_train and y_test to numpy arrays
 y_train_np=np.array(y_train)
 y_test_np=np.array(y_test)
 
 k_values=list(range(1, 15))
 accuracies= []
 
 forkink_values:
     y_pred=knn_euclidean_distance(X_train_np, y_train_np, X_test_np, k)
     accuracy=accuracy_score(y_test_np, y_pred)
     accuracies.append(accuracy)
 
 # Create a data frame to store k values and accuracies
 results_df=pd.DataFrame({'k': k_values, 'Accuracy': accuracies})
 
 # Create the interactive plot using Plotly
 fig=px.line(results_df, x='k', y='Accuracy', title='KNN Accuracy for Different k Values', labels={'k': 'k', 'Accuracy': 'Accuracy'})
 fig.show()
 
 # Get the best k value
 best_k=k_values[accuracies.index(max(accuracies))]
 best_accuracy=max(accuracies)
 print("Best k value is:", best_k , "where accuracy is:" ,best_accuracy)

上面代码使用欧几里得距离将KNN算法应用于分类问题,同时改变邻居的数量(k)以找到最高精度的最佳k值。它使用训练集(X_train_np和y_train_np)来训练模型,使用测试集(X_test_np和y_test_np)来进行预测和评估模型的性能。

k是KNN算法的一个超参数,选择正确的k值对于实现最佳模型性能至关重要,因为k值太小可能导致过拟合,而k值太大可能导致欠拟合。通过可视化k值与其对应的精度之间的关系,可以深入了解模型的性能,并为问题选择最合适的k值。

闵可夫斯基距离的代码修改如下:

 # Run the KNN algorithm on the test set for different k and p values
 k_values=list(range(1, 15))
 p_values=list(range(1, 6))
 results= []
 
 forkink_values:
     forpinp_values:
         y_pred=knn_minkowski_distance(X_train_np, y_train_np, X_test_np, k, p)
         accuracy=accuracy_score(y_test_np, y_pred)
         results.append((k, p, accuracy))
 
 # Create a data frame to store k, p values, and accuracies
 results_df=pd.DataFrame(results, columns=['k', 'p', 'Accuracy'])
 
 # Create the 3D plot using Plotly
 fig=go.Figure(data=[go.Scatter3d(
     x=results_df['k'],
     y=results_df['p'],
     z=results_df['Accuracy'],
     mode='markers',
     marker=dict(
         size=4,
         color=results_df['Accuracy'],
         colorscale='Viridis',
         showscale=True,
         opacity=0.8
     ),
     text=[f"k={k}, p={p}, Acc={acc:.2f}"fork, p, accinresults]
 )])
 
 fig.update_layout(scene=dict(
     xaxis_title='k',
     yaxis_title='p',
     zaxis_title='Accuracy'
 ))
 
 fig.show()

为了进一步改善我们的结果,我们还可以数据集进行缩放。应用特征缩放的主要目的是确保所有特征具有相同的尺度,这有助于提高基于距离的算法(如KNN)的性能。在KNN算法中,数据点之间的距离对确定它们的相似度起着至关重要的作用。如果特征具有不同的尺度,则算法可能会更加重视尺度较大的特征,从而导致次优预测。通过将特征缩放到均值和单位方差为零,算法可以平等地对待所有特征,从而获得更好的模型性能。

本文将使用StandardScaler()和MinMaxScaler()来扩展我们的数据集。StandardScaler和MinMaxScaler是机器学习中两种流行的特征缩放技术。这两种技术都用于将特征转换为公共尺度,这有助于提高许多机器学习算法的性能,特别是那些依赖于距离的算法,如KNN或支持向量机(SVM)。

使用不同的尺度和不同的距离函数训练KNN,可以进行比较并选择最适合数据集的技术。我们得到了以下结果:

KNN中不同距离度量对比和介绍

可以使用柱状图表示来更好地分析和理解这些结果。

KNN中不同距离度量对比和介绍

总结

根据上面的结果,我们可以得到以下的结论:

在不进行特征缩放时,欧几里得距离和闵可夫斯基距离都达到了0.982456的最高精度。

曼哈顿离在所有情况下的精度都比较低,这表明欧几里得或闵可夫斯基距离可能更适合这个问题。当闵可夫斯基距离度量中的p值为2时,它等于欧几里得距离。在我们这个实验中这两个指标的结果是相同的,也证明了这是正确的。

对于欧几里得和闵可夫斯基距离度量,不应用任何特征缩放就可以获得最高的精度。而对于曼哈顿距离,与非缩放数据相比,StandardScaler和MinMaxScaler都提高了模型的性能。这表明特征缩放的影响取决于所使用的距离度量。

最佳k值:最佳k值取决于距离度量和特征缩放技术。例如,k=11是不应用缩放并且使用欧几里得距离或闵可夫斯基距离时的最佳值,而k=9是使用曼哈顿距离时的最佳值。当应用特征缩放时,最佳k值通常较低,范围在3到11之间。

最后,该问题的最佳KNN模型使用欧式距离度量,无需任何特征缩放,在k=11个邻居时达到0.982456的精度。这应该是我们这个数据集在使用KNN时的最佳解。

如果你想自己实验,完整代码和数据都可以在这里找到:

https://avoid.overfit.cn/post/19200b7f741f4686a9b6ada15552d1ba

作者:Abdullah Siddique文章来源地址https://www.toymoban.com/news/detail-435147.html

到了这里,关于KNN中不同距离度量对比和介绍的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习之KNN(K近邻)算法

    KNN算法又叫做K近邻算法,是众多机器学习算法里面最基础入门的算法。KNN算法是最简单的分类算法之一,同时,它也是最常用的分类算法之一。KNN算法是有监督学习中的分类算法,它看起来和Kmeans相似(Kmeans是无监督学习算法),但却是有本质区别的。 KNN算法基于实例之间

    2024年02月08日
    浏览(32)
  • 机器学习——K最近邻算法(KNN)

    机器学习——K最近邻算法(KNN) 在传统机器学习中,KNN算法是一种基于实例的学习算法,能解决分类和回归问题,而本文将介绍一下KNN即K最近邻算法。 K最近邻(KNN)算法是一种基于实例的学习算法,用于分类和回归问题。它的原理是 根据样本之间的距离来进行预测 。 核

    2024年02月09日
    浏览(41)
  • 机器学习之——K近邻(KNN)算法

                    k-近邻算法(K-Nearest Neighbors,简称KNN)是一种用于分类和回归的统计方法。KNN 可以说是最简单的分类算法之一,同时,它也是最常用的分类算法之一。                 k-近邻算法基于某种距离度量来找到输入样本在训练集中的k个最近邻居,并且根据这k个

    2024年04月10日
    浏览(37)
  • 【机器学习】分类算法 - KNN算法(K-近邻算法)KNeighborsClassifier

    「作者主页」: 士别三日wyx 「作者简介」: CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」: 对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 is_array() 可以 「检测」 变量是不是 「数组」 类型。 语法 参数 $var :需要检

    2024年02月16日
    浏览(40)
  • PyTorch中的K最近邻(KNN)算法

    欢迎来到这篇博客!今天我们将深入探讨PyTorch中的K最近邻(KNN)算法,这是一种简单但非常有用的机器学习算法。无论你是机器学习初学者还是有一些经验,我们将从头开始,逐步解释KNN算法的工作原理和如何在PyTorch中实现它。 K最近邻算法是一种监督学习算法,用于分类

    2024年01月21日
    浏览(36)
  • 【Python机器学习】实验06 KNN最近邻算法

    1. k k k 近邻法是基本且简单的分类与回归方法。 k k k 近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的 k k k 个最近邻训练实例点,然后利用这 k k k 个训练实例点的类的多数来预测输入实例点的类。 2. k k k 近邻模型对应于基于训练数据集对

    2024年02月15日
    浏览(47)
  • 【Python】机器学习-K-近邻(KNN)算法【文末送书】

             目录 一 . K-近邻算法(KNN)概述  二、KNN算法实现 三、 MATLAB实现 四、 实战         K-近邻算法(KNN)是一种基本的分类算法,它通过计算数据点之间的距离来进行分类。在KNN算法中,当我们需要对一个未知数据点进行分类时,它会与训练集中的各个数据点进

    2024年02月08日
    浏览(43)
  • 用K近邻(KNN)机器学习算法进行股票走势预测-Python

    K近邻(KNN,K-Nearest Neighbors)是最简单的机器学习算法之一,可用于回归和分类。KNN是一种“惰性”学习算法,从技术上讲,它不训练模型来进行预测。K近邻的逻辑是,假设有一个观测值,这个观测值被预测属于离它k个最近观测值中所占比例最大的那一个类。KNN方法是直接尝试

    2024年02月04日
    浏览(49)
  • C语言经典算法之k最近邻(K-Nearest Neighbor, KNN)算法

    目录 前言 A.建议 B.简介 一 代码实现 二 时空复杂度 A.时间复杂度: B.空间复杂度: C.总结: 三 优缺点 A.优点: B.缺点: 四 现实中的应用 1.学习算法最重要的是理解算法的每一步,而不是记住算法。 2.建议读者学习算法的时候,自己手动一步一步地运行算法。 k最近邻(K

    2024年04月13日
    浏览(38)
  • K近邻算法(K-Nearest Neighbors, KNN)原理详解与应用

    K近邻算法(K-Nearest Neighbors, KNN)是一种常用的非参数化的监督学习算法,用于分类和回归任务。本文将深入解析KNN的原理,从距离度量到K值选择,帮助读者全面理解KNN的工作原理和应用。 KNN算法基于一个简单的思想:相似的样本具有相似的类别。它通过计算新样本与训练集

    2024年02月10日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包