RTX4070ti-40系列显卡配置pytorch深度学习环境过程

这篇具有很好参考价值的文章主要介绍了RTX4070ti-40系列显卡配置pytorch深度学习环境过程。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

这几天新配的4070需要安装深度学习环境,开始为了图简便把之前显卡的环境复制过来,结果有各种小问题,什么环境无法导入pytorch,显卡算力和torch的算力不匹配等小问题,导致两天才弄好,下面说下成功安装过程。。。。

1,首先安装好对应的驱动和cudnn-英伟达官网下载具体2可参考这位博主


https://blog.csdn.net/weixin_44791964/article/details/120668551

其中nividia-smi 的版本需要高于或等于cudnn(cuda)的版本。

(78条消息) NVIDIA显卡驱动版本,CUDA版本,cudnn版本之间关系及如何选择_显卡驱动版本高_仟人斩的博客-CSDN博客

2.安装好驱动就得 安装anaconda3,按照一般步骤安装就是了问题不大。首先登录Anaconda的官网:Anaconda | Anaconda Distribution。直接下载对应安装包就可以。

3配置pytorch-gpu环境-Pytorch官网:https://pytorch.org/

首先Win+R启动cmd,在命令提示符内输入以下命令:

conda create –n pytorch python=3.7
conda activate pytorch

 进入到torch环境-比如我的是torch

 RTX4070ti-40系列显卡配置pytorch深度学习环境过程

其中Python版本终端输入Python查询就行。

然后, 在torch环境下进行相应的pytorch版本安装

RTX4070ti-40系列显卡配置pytorch深度学习环境过程

这里有个问题是官方的下载比较慢,也不建议用镜像原,我第一次用镜像下的就是cpu版本的torch,结果cuda一直是false。推荐本地直接下载包安装较快,我们到https://download.pytorch.org/whl/torch_stable.html这个网站里:

RTX4070ti-40系列显卡配置pytorch深度学习环境过程

cu+序号后面表示cuda版本,即GPU版本(cpu+序号表示cpu),如cu117表示cuda 11.7;

cp+序号表示python版本,如cp310表示python 3.10;我们按自己的cuda版本和python版本找到对应的torch和torchversion文件即可

RTX4070ti-40系列显卡配置pytorch深度学习环境过程

然后是pip install + 文件名(注意要带whl),如 

pip install torchvision-0.14.0+cu117-cp310-cp310-win_amd64.whl  

安装好后检查:

进入python环境
(cat) C:\Users\asus>python
 
导入torch
>>> import torch
 
>>> print(torch.cuda.is_available())    #cuda是否可用
 
>>>print(torch.cuda.get_device_name(0)) #返回设备索引
 
>>>print(torch.cuda.device_count())     # 返回GPU的数量
 
>>>print(torch.cuda.current_device())   # 返回当前设备索引
 
>>> print(torch.rand(3,3).cuda())

结果:查看包和cuda

RTX4070ti-40系列显卡配置pytorch深度学习环境过程

 有torch和vision且为cu版本对应就没问题。

RTX4070ti-40系列显卡配置pytorch深度学习环境过程

 有True ,就可以愉快得使用torch。文章来源地址https://www.toymoban.com/news/detail-435252.html

到了这里,关于RTX4070ti-40系列显卡配置pytorch深度学习环境过程的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Ubuntu 20.04 RTX 4090显卡 深度学习环境配置(Nvidia显卡驱动、CUDA11.6.0、cuDNN8.5)

    参考文献:从零到一保姆级Ubuntu深度学习服务器环境配置教程 看文献中“ 三、 NVIDIA驱动安装 ” 安装NVIDIA驱动,这也是安装CUDA10.0及其对应版本的CuDNN和tensorflow的重要步骤。 1.1.1 英伟达中国驱动官网 进入英伟达中国驱动官网 1.1.2 输入显卡型号查询 1.1.3 查看搜索结果 1.2.1 方

    2024年02月04日
    浏览(109)
  • 4070配置pytorch-GPU过程记录

    为新买的电脑配置深度学习环境,记录几个踩坑点 我的电脑信息:4070显卡,最高支持CUDA12.0,已安装pycharm,anaconda并且已经创建环境python=3.10 在安装CUDA之前需要先确定pytorch支持的CUDA,截止到2023.3.3号pytorch最高版本先行版支持11.8(稳定版是11.7,但搜索资料得知 pytorch是从11.

    2024年02月09日
    浏览(52)
  • 深度学习环境配置系列文章(二):Anaconda配置Python和PyTorch

    第一章 专业名称和配置方案介绍 第二章 Anaconda配置Python和PyTorch 第三章 配置VS Code和Jupyter的Python环境 第四章 配置Windows11和Linux双系统 第五章 配置Docker深度学习开发环境 Anaconda有着强大的包管理和环境管理的功能,使用后可以方便地使用和切换不同版本的Python和PyTorch等科学

    2024年01月23日
    浏览(58)
  • GPU版本的pytorch安装(显卡为3060ti,如何选择对应的cuda版本)

    显卡为3060ti g6x,操作系统win10 要清楚下面的几个常识 1.GPU和CPU是采用不同架构设计出来的,简单来说,GPU会比CPU多很多计算单元,用于训练网络时,速度比CPU快很多。 2.CUDA是一个计算平台和编程模型,提供了操作GPU的接口。 3.网上很多教程说的安装CUDA其实是指CUDA Toolkit,是

    2024年02月08日
    浏览(49)
  • pytorch 40 分享从0开始构建一个独立的深度学习项目

    都2023年了,估计没有几个人会自己独立从0开始构建深度学习项目的了,全是依赖现有的开源库进行项目研制开发。这里回顾几年的工作经验,对构建深度学习项目进行初步梳理。 通常深度学习任务都被描述为:假设函数、损失函数和迭代函数。假设函数一般是我们的模型,

    2024年02月09日
    浏览(55)
  • RTX4080+Ubuntu20.04深度学习环境配置(小白入门友好)

    因为科研需要,最近几个月开始入门深度学习,准备做语义分割相关的东西。整了一块16G的4080显卡,从0开始学习配置,但找了网上很多资源,感觉很多都不适合纯小白入门。第一次配置成功后没有做记录,昨天因为系统的ubuntu图形用户界面崩掉了,整了很多方法,都没有成

    2024年02月04日
    浏览(75)
  • Win11+RTX3060显卡 配置cuda和cudnn

    查看nvidia设置,右击它 点击nvidai控制面板,点击系统信息: 选择CUDA版本,在NVIDIA控制面板可以看到RTX3060驱动目前最高支持CUDA 11.6版本(我的电脑这么显示的)。 安装可以参考这篇博客。 然后配置国内镜像源(win+r,打开终端),输入以下指令: 有的时候,https会有一些问

    2024年02月16日
    浏览(39)
  • 【Win11+RTX3050显卡】cuda+cudnn+tensorflow 环境配置

    【Win11+RTX3050显卡】cuda+cudnn+tensorflow 环境配置 CUDA 11.5 cudnn 8.3.3 tensorflow-gpu 2.6 CUDA:CUDA 即英伟达的显卡并行计算框架 nvidia-smi 可以查看,每个版本的CUDA都是基于一定版本的驱动建立的,所以它对驱动的最低版本是有要求的 cudnn:cudnn 是基于CUDA架构的神经网络库 是专门用于神

    2024年02月15日
    浏览(63)
  • 二十、Ubuntu22.04 + RTX2080 配置显卡驱动 + CUDA + cuDNN

    首先确定自己的显卡型号 可以看到显卡型号是 GeForce RTX 2080 然后去NVIDIA 官网下载对应的显卡驱动 显卡驱动下载地址 然后把下载好的驱动程序放到一个英文文件夹(否则进入非图形化界面时可能中文乱码),例如我这里新建了一个 driver 安装所需依赖 卸载原有 NVIDIA 驱动 禁用

    2024年02月04日
    浏览(56)
  • ubuntu 20.04 4090 显卡驱动安装 深度学习环境配置

    准备工作: 换源 安装输入法:重启的步骤先不管(自选) sudo apt update sudo apt upgrade 禁用nouveau驱动(这个驱动是ubuntu开源小组逆向破解NVIDIA的开源驱动,与英伟达的原有驱动不兼容)执行完第2.3步,先不重启。 打开 软件和更新 , 选择 附加驱动,安装推荐驱动(第一个),点

    2024年02月16日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包