【python】keras包:深度学习(序章)

这篇具有很好参考价值的文章主要介绍了【python】keras包:深度学习(序章)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Part 1. 环境配置

keras包 与 tensorflow包

Win+R ,输入指令:
pip install tensorflow
pip install keras
推荐镜像:-i https://pypi.tuna.tsinghua.edu.cn/simple/

关于包

keras包相当于是 tensflow 包的前端
tensflow包相当于是keras包的后端
keras包用来写深度学习更方便
官方链接:https://keras.io/zh/

Part 2. 学习数据下载

mnist数据集

官方网站:下载连接
共包含4个文件:训练集、训练集标签、测试集、测试集标签

数据集导入

form keras.datasets import mnist
(X_train,y_train),(Xtest,y_test) = mnist.load_data()
# 更多数据集可通过官网了解

数据图片展示

img1 = X_train[0]
fig1 = plt.figure(figsize(3,3))
plt.imshow(img1)

Part 3. 模型保存与加载

深度学习相当于对n维数据进行逻辑回归的拟合,其模型拟合时间消耗大,因此为了防止每使用一次模型都消耗一次时间,可以对拟合好的模型进行保存,并对拟合好的模型进行加载
参考文章——知乎链接

保存模型

model.save( 'save_path,本地存储路径.h5 ' )
保存后的模型以 .h5文件格式存储
可用软件 HDFview查看,可查看其中的多个要素信息,如dense, loss等

模型加载

from keras.models import load_model
model = load_model( 'save_path,本地存储路径.h5' )

模型的继续训练

model.fit( point,label,epochs=30)
注:fit函数表示在当前模型基础上,填充point_label对应数据,对模型继续进行训练

Part 4. 什么是深度学习?

参考链接文章来源地址https://www.toymoban.com/news/detail-435255.html

到了这里,关于【python】keras包:深度学习(序章)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python与深度学习:Keras、PyTorch和Caffe的使用和模型设计

      深度学习已经成为当今计算机科学领域的热门技术,而Python则是深度学习领域最受欢迎的编程语言之一。在Python中,有多个深度学习框架可供选择,其中最受欢迎的包括Keras、PyTorch和Caffe。本文将介绍这三个框架的使用和模型设计,帮助读者了解它们的优势、特点和适用场

    2024年02月09日
    浏览(39)
  • 【window环境】Python安装与深度学习环境(tensorflow)配置保姆教程

    此贴主要记录window环境下,python安装、配置python环境及tensorflow(GPU、CPU)的配置。初学者记录贴,如内容有误,还请各位大佬指出来。 (1)访问Anaconda官网( https://docs.conda.io/en/latest/miniconda.html ),点击所需版本的下载链接。 (例如: https://repo.anaconda.com/miniconda/Miniconda3-

    2024年02月02日
    浏览(61)
  • 90 | Python人工智能篇 —— 深度学习算法 Keras基于卷积神经网络的情感分类

    情感分类是自然语言处理(NLP)领域的一个重要任务,它旨在将文本划分为积极、消极或中性等不同情感类别。深度学习技术,尤其是卷积神经网络(CNN),在情感分类任务中取得了显著的成果。Keras作为一个高级的深度学习框架,提供了便捷易用的工具来构建和训练情感分

    2024年02月13日
    浏览(54)
  • 深度学习环境配置系列文章(二):Anaconda配置Python和PyTorch

    第一章 专业名称和配置方案介绍 第二章 Anaconda配置Python和PyTorch 第三章 配置VS Code和Jupyter的Python环境 第四章 配置Windows11和Linux双系统 第五章 配置Docker深度学习开发环境 Anaconda有着强大的包管理和环境管理的功能,使用后可以方便地使用和切换不同版本的Python和PyTorch等科学

    2024年01月23日
    浏览(61)
  • 深度学习—Python、Cuda、Cudnn、Torch环境配置搭建

    近期由于毕设需要使用Yolo,于是经过两天捣腾,加上看了CSDN上各位大佬的经验帖后,成功搭建好了GPU环境,并能成功使用。因而在此写下这次搭建的历程。 万事开头难,搭建环境很费时间,如果一开始版本不对应,到后面就要改来改去,很麻烦。首先要注意以下事项: 1.

    2024年02月11日
    浏览(211)
  • 基于Android+OpenCV+CNN+Keras的智能手语数字实时翻译——深度学习算法应用(含Python、ipynb工程源码)+数据集(五)

    本项目依赖于Keras深度学习模型,旨在对手语进行分类和实时识别。为了实现这一目标,项目结合了OpenCV库的相关算法,用于捕捉手部的位置,从而能够对视频流和图像中的手语进行实时识别。 首先,项目使用OpenCV库中的算法来捕捉视频流或图像中的手部位置。这可以涉及到

    2024年02月07日
    浏览(43)
  • 基于Android+OpenCV+CNN+Keras的智能手语数字实时翻译——深度学习算法应用(含Python、ipynb工程源码)+数据集(一)

    本项目依赖于Keras深度学习模型,旨在对手语进行分类和实时识别。为了实现这一目标,项目结合了OpenCV库的相关算法,用于捕捉手部的位置,从而能够对视频流和图像中的手语进行实时识别。 首先,项目使用OpenCV库中的算法来捕捉视频流或图像中的手部位置。这可以涉及到

    2024年02月07日
    浏览(44)
  • 深度学习(5)--Keras实战

    目录 一.Keras基础概念 二.如何跑通Keras项目 2.1.在cmd上跑通 2.2.在PyCharm上跑通 Keras是深度学习中的一个神经网络框架,是一个高级神经网络API,用Python编写,可以在TensorFlow,CNTK或Theano之上运行。 Keras优点: (1). 允许简单快速的原型设计(用户友好性,模块化和可扩展性)。

    2024年01月25日
    浏览(54)
  • Keras深度学习实战(41)——语音识别

    语音识别( Automatic Speech Recognition , ASR ,或称语音转录文本)使声音变得\\\"可读\\\",让计算机能够\\\"听懂\\\"人类的语言并做出相应的操作,是人工智能实现人机交互的关键技术之一。在《图像字幕生成》一节中,我们已经学习了如何将手写文本图像转录为文本,在本节中,我们将利用

    2024年02月04日
    浏览(45)
  • 深度学习使用Keras进行多分类

    之前的文章介绍了使用Keras解决二分类问题。那么对于多分类问题该怎么解决?本文介绍利用深度学习----Keras进行多分类。 为了演示,本次选用了博文keras系列︱图像多分类训练与利用bottleneck features进行微调(三)中提到的数据集,原始的数据集将所有类别的train照片放到t

    2024年02月07日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包