Anaconda3、TensorFlow和keras简单安装方法(较详细)

这篇具有很好参考价值的文章主要介绍了Anaconda3、TensorFlow和keras简单安装方法(较详细)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

因学习需要用到keras,通过查找较多资料最终完成Anaconda、TensorFlow和Keras的简单安装。因为网上的相关资料较多但大部分不够全面,查找起来不太方便,因此自己记录一下成功下载安装的详细过程,顺便推荐一下借鉴的写的很好的相关教程文章。

keras需要在TensorFlow之上才能运行,所以要先安装TensorFlow ,而TensorFlow只能在3.7以前的python版本中运行,所以需要先创建一个基于python 3.6的虚拟环境,因此便需要先下载Anaconda。

一、Anaconda3下载和安装

Anaconda下载安装教程原文链接:https://blog.csdn.net/wq_ocean_/article/details/103889237

博主写的很详细。

Anaconda包括Conda、Python以及一大堆安装好的工具包,比如:numpy、pandas等

因此安装Anaconda的好处主要为以下几点:

1)包含conda:conda是一个环境管理器,其功能依靠conda包来实现,该环境管理器与pip类似,那有童鞋会问了:我能通过pip装conda包达到conda环境管理器一样的功能吗?答案是不能,conda包的实现离不开conda环境管理器。想详细知道两者异同可以去知乎遛一遛https://www.zhihu.com/question/279152320

2)安装大量工具包:Anaconda会自动安装一个基本的python,该python的版本Anaconda的版本有关。该python下已经装好了一大堆工具包,这对于科学分析计算是一大便利,你愿意费时耗力使用pip一个个包去装吗?

3)可以创建使用和管理多个不同的Python版本:比如想要新建一个新框架或者使用不同于Anoconda装的基本Python版本,Anoconda就可以实现同时多个python版本的管理。

注:Anaconda3下载在官网下载比较慢,而且容易断,推荐用下面清华镜像方式:

  • 下载地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

Anaconda3、TensorFlow和keras简单安装方法(较详细)

根据需要下载对应版本。

更新conda和所有包的过程较长,而且网络会对更新过程造成影响,我个人安装Anaconda的时候暂未进行更新,这里可能导致某些问题。

二、TensorFlow下载和安装

TensorFlow只能在3.7以前的python版本中运行,所以需要先创建一个基于python 3.6的虚拟环境,旧版本的python可以卸载也可以不卸载(参考Anaconda下载安装介绍方法)。

参考文章教程原文链接:

TensorFlow和Keras安装教程_TensorFlow安装Keras_你是认真的吗...的博客-CSDN博客

简洁的keras安装方法_keras下载安装教程_m0_37575524的博客-CSDN博客

  1. 打开Anaconda Prompt(先下载Anaconda3)

Anaconda3、TensorFlow和keras简单安装方法(较详细)

Anaconda Prompt常用语句:

1.查看存在的环境:conda info -e

2.创建新环境:conda create --name 环境名 python=(python的版本号)

3.切换到某个环境:conda activate 环境名

4.查看环境中已安装的包:conda list

5.在环境中安装包:pip install 包名

6.删除包:pip unstall 包名

7.删除环境:conda env remove -n 环境名

  1. 新建一个python3.6环境(不建议用自带的base)

#创建虚拟环境名
conda create -n TensorFlow_py python=3.6
#查看已创建环境
conda info --envs
#切换到创建的环境中
conda activate TensorFlow_py

当命令行前缀(base)变成对应的环境名(TensorFlow_py)时成功切换环境,在该环境下输入python

#命令行输入python检查当前python版本,显示>>>表示成功安装,可直接输入python命令
python
#进入python
>>>exit() #输入该命令退出python
Anaconda3、TensorFlow和keras简单安装方法(较详细)

(其中python3.6版本文件会安装在Anaconda的\envs\TensorFlow_py\文件夹下)

  1. 安装TensorFlow

打开Anaconda Prompt后输入以下命令下载更新pip

python -m pip install --upgrade pip

因为Keras搭建在TensorFlow基础上,在安装Keras安装之前需要安装numpy、matplotlib、scipy等工具包,可直接pip下载也可使用清华镜像网下载安装相关的python模块包。

#清华镜像下载较快
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple +包名 
#直接下载模块包
pip install +包名 
#卸载包
pip uninstall +包名 

在上述TensorFlow_py环境下打开python,输入import+包名,未报错则成功安装模块包

Anaconda3、TensorFlow和keras简单安装方法(较详细)

安装TensorFlow2.0.0(可自己选择安装的版本,修改版本号即可)

pip install TensorFlow==2.0.0

注:因为Keras一定要和下载的TensorFlow版本匹配,所以后续下载Keras要注意看下载的是哪个版本

部分版本对应图如下:

Anaconda3、TensorFlow和keras简单安装方法(较详细)

下载完打开python 进行import +tensorflow,验证是否成功安装TensorFlow

三、Keras下载和安装

  1. 打开Anaconda prompt切换到有TensorFlow的环境下:

conda activate TensorFlow_py
  1. 安装keras前先依次执行以下两个命令:

conda install mingw libpython 
pip install theano
  1. 最后执行安装keras的命令,注意版本号要对应TensorFlow

pip install keras==2.3.1  
Anaconda3、TensorFlow和keras简单安装方法(较详细)

下载完打开python 进行import +keras,输出Using TensorFlow backend安装成功。

四、配置PyCharm

顺便记录一下在进行PyCharm配置时遇到的问题

  1. 新建项目后选择添加解释器

Anaconda3、TensorFlow和keras简单安装方法(较详细)
  1. 选择左侧Conda环境,新版本下的PyCharm如下界面,其中Conda可执行文件选择Anaconda3根目录下的_conda.exe文件,点击加载环境,具体内容可参考文章pycharm找不到conda可执行文件_月光卫士的博客-CSDN博客

Anaconda3、TensorFlow和keras简单安装方法(较详细)
  1. 直接使用现有环境即可

Anaconda3、TensorFlow和keras简单安装方法(较详细)
  1. 创建项目文件,左下角选择TensorFlow_py路径下的解释器

Anaconda3、TensorFlow和keras简单安装方法(较详细)
  1. 等待解释器内容更新完毕后,添加代码并执行

from keras.utils import to_categorical
from keras import models, layers, regularizers
from keras.optimizers import RMSprop
from keras.datasets import mnist
import matplotlib.pyplot as plt
#加载数据集并处理
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()#归一化处理,注意必须进行归一化操作,否则准确率非常低,图片和标签

#将图片由二维铺开成一维
train_images = train_images.reshape((60000, 28*28)).astype('float')  #将28*28的二维数组转变为784的一维数组,浮点数类型
test_images = test_images.reshape((10000, 28*28)).astype('float')
train_labels = to_categorical(train_labels)  #to_categorical就是将类别向量转换为二进制(只有0和1)的矩阵类型表示
test_labels = to_categorical(test_labels)
#print(train_labels[0])
#搭建神经网络(全连接)
network = models.Sequential()   #选用的是Sequential 序贯模型sigmoid
network.add(layers.Dense(units=15, activation='sigmoid', input_shape=(28*28, ),))#添加一个(隐藏层)全连接层,神经元为15,激活函数是relu线性整流
#函数,输入形状为28*28
network.add(layers.Dense(units=10, activation='softmax'))#添加一个(输出层)全连接层,神经元为10,激活函数为softmax(Softmax 具有更好的解释性,
#这块通过softmax激活函数,最后的数组中,十个数哪个最大,计算机就认为是哪个

#神经网络的编译和训练
# 编译步骤,损失函数是模型优化的目标,优化器使用RMSporp,学习率为0.001,损失函数是categorical_crossentropy,评价函数为accuracy准确率
network.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])#RMSprop(lr=0.001)
# 训练网络,用fit函数(fit()方法用于执行训练过程), epochs表示训练多少个回合, batch_size表示每次训练给多大的数据,一次训练所选取的样本数。
network.fit(train_images, train_labels, epochs=22, batch_size=128, verbose=1)  #verbose:日志显示 0 为不在标准输出流输出日志信息 1 为输出进度条记录
                                                                                                                #2 为每个epoch输出一行记录
#测试集上测试模型性能
#y_pre = network.predict(test_images[:5])  #预测前五张图片的,model.predict 实际预测,其输出是目标值,根据输入数据预测。
#print(y_pre, test_labels[:5])
test_loss, test_accuracy = network.evaluate(test_images, test_labels)  #model.evaluate函数预测给定输入的输出
print("test_loss:", test_loss, "    test_accuracy:", test_accuracy)
print(network.summary())  #查看神经网络model结构

此文仅供学习参考使用,若有不正确需要补充的地方欢迎指正。文章来源地址https://www.toymoban.com/news/detail-435279.html

到了这里,关于Anaconda3、TensorFlow和keras简单安装方法(较详细)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • windows10系统PYthon深度学习环境安装(Anaconda3、PYthon3.10、CUDA11.6、CUDDN10、pytorch、tensorflow,Pycharm)

    一、 總體说明 1、說明:總體採用https://blog.csdn.net/zhizhuxy999/article/details/90442600方法,部分步驟由於版本變化,進行了調整。 2、基本概念 编程语言/编译器:Python。Python的特点是“用最少的代码干最多的事”。Python 2即在2020年停止更新,所以现在学习Python 3是最好的选择。 P

    2023年04月18日
    浏览(78)
  • Ubuntu安装Anaconda详细步骤(Ubuntu22.04.1,Anaconda3-2023.03)

    本文主要讲述了在Ubuntu中安装anaconda的具体步骤 准备环境:Ubuntu22.04.1,Anaconda3 1.下载Anaconda3 在清华镜像下载Linux版本的anaconda 清华镜像官网Anaconda下载 我选择的是Anaconda3-2023.03-Linux-x86_64.sh 下载好的Anaconda3-2023.03-Linux-x86_64.sh如图所示: 2.在用户文件夹下新建一个名为anaconda的文

    2024年02月11日
    浏览(41)
  • 使用Anaconda安装TensorFlow详细教程

    一、Anaconda安装 可以参考笔者的这篇博客:Anaconda安装详细教程 二、准备工作 1、单击启动Anaconda Prompt创建新虚拟环境 2、在Anaconda Prompt依次执行以下命令 conda create -n pytorch python=3.6 ,创建名字为tensorflow的虚拟环境,再通过命令 conda info --envs 可以查到已存在的虚拟环境(tenso

    2024年01月23日
    浏览(45)
  • Centos 7 - Anaconda3 安装教程及报错集锦 - 取消自动激活 base 环境方法

    这里笔者下载清华镜像,总会有问题,例如 wget 下载报错 安全证书什么的,就算解决证书问题,还不能下载,直接报错 Forbidden 403 ,但是中科大镜像就不会。 中科大镜像 这里笔者用到了 清华镜像使用 wget 下载镜像文件来安装 anaconda3,却无法下载该安装文件,即使是修改安

    2024年02月14日
    浏览(52)
  • tensorflow详细安装教程(Win10, Anaconda,Python3.9)

    CPU版本和GPU版本的区别主要在于运行速度,GPU版本运行速度更快,所以如果电脑显卡支持cuda,推荐安装gpu版本的。 操作并不复杂,一开始我觉得要下这么多东西,感觉很麻烦,不想搞,但为了速度,最后还是尝试安装了一下,发现并没有那么难搞。 1.1 CPU版本,无需额外准备

    2024年02月02日
    浏览(53)
  • 报错:cannot import name ‘dtensor‘ from ‘tensorflow.compat.v2.experimental‘ (/Users/pxs/anaconda3/lib

    在pycharm中之前运行很好,突然出现[cannot import name ‘dtensor’ from ‘tensorflow.compat.v2.experimental’ (/Users/pxs/anaconda3/lib/python3.7/site - packages/tensorflow/_api/v2/compat/v2/experimental/ init .py)]文图 1.删除原先tensorflow的版本 pip3 uninstall tensorflow 2.重现安装最新版本 pip3 install tensorflow 2.6.0 但是仍

    2024年02月09日
    浏览(57)
  • 详细搭建tensorflow、keras步骤与匹配版本(降低tensorflow版本)

    这几天自己搭建环境后的总结。 主要顺序:创建环境-python3.6-tensorflow2.0.0-keras2.3.1-numpy1.19.5-scipy1.5.4-matplotlib3.3.4-scikit-learn,这是我下载的版本,版本匹配可以搜一下。 重点注意!!!版本一定要匹配!!!不然后面很多大坑,下载顺序也很重要!!! 主要是因为运行代码时

    2024年02月06日
    浏览(42)
  • Anaconda平台下从0到1安装TensorFlow环境详细教程(Windows10+Python)

    Anaconda下载链接:Free Download | Anaconda 下载完成之后,开始安装,修改安装路径至指定文件夹下,由于安装过程比较简单,此处略过;   在安装之前,我们需要如下准备工作 2.1 确定电脑的独显GPU型号,查看方式如下:搜索--计算机管理--设备管理器--显示适配器;如下图所示,

    2024年02月11日
    浏览(45)
  • Linux系统安装Anaconda3

    1、下载anaconda 没翻墙情况下清华镜像站 下载anaconda 的速度较官网上要快很多 注意:anaconda 与python的对应关系传送 2、服务器上使用 wget + 链接 来下载 选择的一个linux版本并 右键复制链接 3、sh命令安装Anaconda 回车继续 这是具体的协议内容,一直空格到底部,然后输入yes —

    2024年02月13日
    浏览(54)
  • Anaconda3安装教程---图文讲解

    Hello,大家好,我是霜淮子,今天分享一篇Anaconda3的安装教程。 Anaconda,中文大蟒蛇,是一个开源的python发行版本,其包含了conda、Python等180多个科学的依赖项。Anaconda能让你轻松安装在数据科学工作中经常使用的包,还将使用它创建虚拟环境,以便更轻松地处理多个项目。

    2024年02月17日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包