简单理解Transformer注意力机制

这篇具有很好参考价值的文章主要介绍了简单理解Transformer注意力机制。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

这篇文章是对《动手深度学习》注意力机制部分的简单理解。

生物学中的注意力

生物学上的注意力有两种,一种是无意识的,零一种是有意识的。如下图1,由于红色的杯子比较突出,因此注意力不由自主指向了它。如下图2,由于有意识的线索是想要读书,即使红色杯子比较突出,注意力依旧指向了书籍。

简单理解Transformer注意力机制

图一 

简单理解Transformer注意力机制

图二 

卷积层、全连接层、池化层就好像无意识的注意力,总是指向突出的特征;注意力机制有区别于此,它包含了有意识的注意力。

在注意力的背景下,有意识线索(想读书)被称为Query,无意识线索(杯子、书等)被称为Key,感官的输入(视觉接收到的无意识线索)称为Value,我们的目标是,通过有意识线索(Query)的引导,将注意力放到权重较大的输入(Value)上。

点积注意力

简单理解Transformer注意力机制

简单理解Transformer注意力机制

为什么相似度能衡量权重大小?直观来讲,我们在预测一个结果时,通过尽可能的了解与我们相似的人或事情,便对结果有了大致把握。想读书和书的相似度要比和水杯的高,因此注意力引导在书本而不是水杯。

至于为什么除以根号d?可以参考下面的解释。

简单理解Transformer注意力机制

图三 

简单理解Transformer注意力机制

最后将得到的权重矩阵B与输入V点积,其结果为n×v维的矩阵,即每个查询通过权重矩阵B对输入V进行加权平均,得到预测的结果。这种加权平均,可以看作一种对输入信息的过滤或者是对输入信息的聚合。对,同池化层的作用,注意力机制可以看作一种带有意识线索的、有权重的池化层,它不会像最大池化层只留下明显的特征,也不会像平均池化层一视同仁的处理,而是根据查询,有轻重的保留特征。

目前为止,经过感性与理性的认识,应该大致清楚QKV各含义,李沐老师在视频里将了另一个更直观的例子帮助理解。

假设有一个人想要了解自己到新公司的薪资(Query), 他可以先了解在公司中其它人的情况(Key),其中与他具有相似技术、学历等特征的人权重当然比较大,反之则会小,那么通过对这些人的薪资(Value)做加权平均,可以估计得到我们想要(Query)的薪资(Value)。

点积自注意力

一般来说,Query,Key,Value 可以不相同,即使Key和Value相同是容易理解的。比如,上面的例子,Value仅指薪资,或者Value与key相同,薪资作为Key的一个属性,这都不妨碍得到想要的结果。但在Transformer的自注意力中,QKV均相同,Query是输入的tokens,Value也是输入的tokens,计算相似度矩阵也是在输入的tokens之间。因此,注意力计算的结果使得每个token融合了其它tokens的信息,实现全局信息交互,当然更多的是自己的信息。

多头自注意力

简单理解Transformer注意力机制

普遍认为的是,多头意味着有多组自注意力,多组QKV参数,多组参数学习token不同的特征部分,使得学习具有多样性,从而均衡一组QKV可能产生的偏差,当然多头自注意力也使得每组参数空间变小。

也有工作[2]认为,多层单头和多头都可以学习到不同子空间特征,但是多头训练更具有稳定性。如24层16头transformer(BERT-large)和384层单头transformer的总注意头数相同,模型尺寸大致相同,但是多头自注意力使得网络层数更浅,有利于训练。

参考

注意力机制 — 动手学深度学习 2.0.0 documentation (d2l.ai)

[2106.09650] Multi-head or Single-head? An Empirical Comparison for Transformer Training (arxiv.org)

简单理解注意力机制 - 知乎 (zhihu.com)

推荐文章

《Attention is All You Need》浅读(简介+代码) - 科学空间|Scientific Spaces (kexue.fm) 文章来源地址https://www.toymoban.com/news/detail-435438.html

到了这里,关于简单理解Transformer注意力机制的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Transformer中的注意力机制及代码

    最近在学习transformer,首先学习了多头注意力机制,这里积累一下自己最近的学习内容。本文有大量参考内容,包括但不限于: ① 注意力,多注意力,自注意力及Pytorch实现 ② Attention 机制超详细讲解(附代码) ③ Transformer 鲁老师机器学习笔记 ④ transformer中: self-attention部分是否需

    2023年04月11日
    浏览(42)
  • 大模型基础之注意力机制和Transformer

    核心思想:在decoder的每一步,把encoder端所有的向量提供给decoder,这样decoder根据当前自身状态,来自动选择需要使用的向量和信息. decoder在每次生成时可以关注到encoder端所有位置的信息。 通过注意力地图可以发现decoder所关注的点。 注意力使网络可以对齐语义相关的词汇。

    2024年02月11日
    浏览(39)
  • 注意力机制——Spatial Transformer Networks(STN)

    Spatial Transformer Networks(STN)是一种空间注意力模型,可以通过学习对输入数据进行空间变换,从而增强网络的对图像变形、旋转等几何变换的鲁棒性。STN 可以在端到端的训练过程中自适应地学习变换参数,无需人为设置变换方式和参数。 STN 的基本结构包括三个部分:定位网

    2024年02月07日
    浏览(43)
  • 【计算机视觉 | 注意力机制】13种即插即用涨点模块分享!含注意力机制、卷积变体、Transformer变体等

    用即插即用的模块“缝合”,加入自己的想法快速搭积木炼丹。 这种方法可以简化模型设计,减少冗余工作,帮助我们快速搭建模型结构,不需要从零开始实现所有组件。除此以外,这些即插即用的模块都具有标准接口,意味着我们可以很方便地替换不同的模块进行比较,加

    2024年02月04日
    浏览(46)
  • 【Transformer】自注意力机制Self-Attention

    \\\"Transformer\\\"是一种深度学习模型,首次在\\\"Attention is All You Need\\\"这篇论文中被提出,已经成为自然语言处理(NLP)领域的重要基石。这是因为Transformer模型有几个显著的优点: 自注意力机制(Self-Attention) :这是Transformer最核心的概念,也是其最大的特点。 通过自注意力机制,模

    2024年02月13日
    浏览(35)
  • 如何理解《注意力机制真的懂得“集中注意力”吗?》

    在文章《从熵不变性看Attention的Scale操作》中,我们就从“集中注意力”的角度考察过Attention机制,当时我们以信息熵作为“集中程度”的度量,熵越低,表明Attention越有可能集中在某个token上。 但是,对于一般的Attention机制来说,Attention矩阵可能是非归一化的,比如《FLAS

    2024年02月05日
    浏览(38)
  • Transformer(一)简述(注意力机制,NLP,CV通用模型)

    目录 1.Encoder 1.1简单理解Attention 1.2.什么是self-attention 1.3.怎么计算self-attention 1.4.multi-headed(q,k,v不区分大小写) 1.5.位置信息表达  2.Decoder(待补充)  3.BERT 参考文献 比方说,下图中的热度图中我们希望专注于小鸟,而不关注背景信息。那么如何关注文本和图像中的重点呢

    2024年02月13日
    浏览(36)
  • 解码Transformer:自注意力机制与编解码器机制详述与代码实现

    本文全面探讨了Transformer及其衍生模型,深入分析了自注意力机制、编码器和解码器结构,并列举了其编码实现加深理解,最后列出基于Transformer的各类模型如BERT、GPT等。文章旨在深入解释Transformer的工作原理,并展示其在人工智能领域的广泛影响。 作者 TechLead,拥有10+年互

    2024年02月13日
    浏览(42)
  • 图解Vit 2:Vision Transformer——视觉问题中的注意力机制

    上节回顾 在Transformer之前的RNN,其实已经用到了注意力机制。Seq2Seq。 对于Original RNN,每个RNN的输入,都是对应一个输出。对于original RNN,他的输入和输出必须是一样的。 在处理不是一对一的问题时,提出了RNN Seq2Seq。也就是在前面先输入整体,然后再依次把对应的输出出来

    2024年02月17日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包