论文阅读《Block-NeRF: Scalable Large Scene Neural View Synthesis》

这篇具有很好参考价值的文章主要介绍了论文阅读《Block-NeRF: Scalable Large Scene Neural View Synthesis》。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

论文地址:https://arxiv.org/pdf/2202.05263.pdf
复现源码:https://github.com/dvlab-research/BlockNeRFPytorch


概述

  Block-NeRF是一种能够表示大规模环境的神经辐射场(Neural Radiance Fields)的变体,将 NeRF 扩展到渲染跨越多个街区的城市规模场景。该方法将场景分解为单独训练的 NeRF,使渲染时间与场景大小解耦,并允许对环境进行每个街区的更新。Block-NeRF为每个单独的 NeRF 添加外观嵌入(appearance embeddings)、学习姿态优化(learned pose refinement)和可控曝光(controllable exposure),并引入了一种在相邻 NeRF 之间对齐外观(aligning appearance)方法来融合不同场景信息。
论文阅读《Block-NeRF: Scalable Large Scene Neural View Synthesis》


模型架构

论文阅读《Block-NeRF: Scalable Large Scene Neural View Synthesis》
  将场景分为多组Block-NeRF,每个Block可以并行独立训练,并在推理过程中进行融合。使得可以对单独的block更新而无需对整个场景进行重新训练。在此过程中,动态选择相关的 Block-NeRF 进行渲染,在跨越场景时以平滑的方式合成场景。为了实现这种平滑的合成方式,优化了Appearance代码来适应照明条件,并使用每个Block-NeRF到新视图的距离来计算插值权值。

Block 大小与位置

  在每个十字路口放置一个Block-NeRF,覆盖十字路口本身与任意连接街道的75%的场景,使得任何两个相邻的街区之间有50%的场景重叠。

独立Block-NeRF的训练过程

论文阅读《Block-NeRF: Scalable Large Scene Neural View Synthesis》

外观编码:使用 MLP 来学习不同外观变化的条件,如不同的天气与光照条件。还可以通过控制外观编码(appearance embedding)来对不同环境进行线性插值,得到不同条件下的环境信息(如多云和晴朗的天空,或者白天与晚上),如图3与图4所示:
论文阅读《Block-NeRF: Scalable Large Scene Neural View Synthesis》
位姿优化:Learned Pose Refinement是通过在每个Block-NeRF中训练一个额外的神经网络来实现的,这个神经网络可以根据输入的图像和初始的相机姿态,输出一个修正后的相机姿态。使得Block-NeRF就可以利用更准确的相机姿态来生成更高质量的新视角图像。
输入图像曝光:将相机曝光信息输入到模型的外观预测部分,使得NeRF补偿视觉上的差异,使用 4 层的 s i n sin sin 来对曝光信息进行编码。
论文阅读《Block-NeRF: Scalable Large Scene Neural View Synthesis》
瞬态(移动)物体:Transient Objects是指在训练图像中出现的临时物体,如行人、车辆等,它们会影响Block-NeRF学习场景的静态结构,因为它们会导致视角不一致。通过以下步骤来消除场景中的瞬态物体的影响:

  • 首先,对于每个训练图像,使用一个分割算法来检测并去除Transient Objects,得到一个纯净的背景图像。
  • 然后,对于每个Block-NeRF,使用去除了Transient Objects的背景图像来训练神经网络,从而学习场景的静态结构。
  • 最后,在渲染新视角图像时,使用原始的训练图像(包含Transient Objects)作为输入,并将分割算法得到的掩码作为额外的输入送入Block-NeRF中,从而在输出图像中保留或去除Transient Objects。
    这样做的好处是,Block-NeRF可以灵活地处理不同场景下的Transient Objects,并且可以在渲染时根据用户需求选择是否显示它们。
    场景可见性预测:Visibility Prediction的具体实现是这样的:
  • 首先,对于每个Block-NeRF,构建一个小的多层感知机(MLP) f v f_v fv ,以位置信息 x x x 和方向信息 d d d 作为输入,用来学习样本点可见性的近似值。
  • 然后,对于每个Block-NeRF,使用其训练图像中的采样点作为输入,计算其可见性近似值,并将其与由密度函数得到的透射率 T i T_i Ti作为监督信号进行训练。
  • 最后,在合并多个Block-NeRF时,使用 f v f_v fv 来判断一个给定的场景区域是否对该Block-NeRF可见,并根据可见性近似值来加权不同Block-NeRF的输出颜色。
    Visibility Prediction可以有效地解决不同Block-NeRF之间的遮挡问题,并且可以提高渲染质量和效率。

Block_Nerf合并

Block-NeRF选择:一个大型场景由多个 Block 组成,Block-NeRF使用两种策略进行Block选择(1)只考虑在目标视点设定半径范围内的Block-NeRF。(2)计算每个候选Block的相关可见性,如果平均可见性小于阈值,则舍弃该Block。如图2所示,可见性可以由一个独立的模块计算,且不需要在目标图像的分辨率下进行渲染。通过筛选,通常剩余1-3个Block-NeRF有待合并。
Block-NeRF合成:使用相机原点 c c c 与每个Block-NeRF 的中心 x i x_i xi 之间的逆距离加权系数对候选 Block 插值( w i ∝ d i s t a n c e ( c , x i ) − p w_i\propto distance(c, x_i)^{-p} widistance(c,xi)p, p p p 影响Block之间的混合速率)。插值在二维图像中进行,在不同Block-NeRF之间产生平滑的过渡。
场景外观匹配
论文阅读《Block-NeRF: Scalable Large Scene Neural View Synthesis》
Appearance Matching是为了在不同block之间消除外观上的不一致性,使得渲染结果更加自然和真实。具体步骤如下:

  • 对于每个block,为其分配一个外观编码(appearance code),这是一个随机初始化的向量,用于控制block的颜色和光照。
  • 对于每对相邻的block,选择一个三维区域作为匹配位置(matching location),这个区域要求在两个block中都有较高的可见度。
  • 对于每个匹配位置,冻结两个block对应的NeRF网络的权重,只优化其中一个block的外观编码,使得两个block在该位置渲染出来的颜色值之间的L2损失最小。
  • 重复上述步骤,直到所有相邻的block都进行了外观匹配。
    以此实现大场景中不同block之间外观上的对齐,如图6所示。

实验结果

论文阅读《Block-NeRF: Scalable Large Scene Neural View Synthesis》
论文阅读《Block-NeRF: Scalable Large Scene Neural View Synthesis》
论文阅读《Block-NeRF: Scalable Large Scene Neural View Synthesis》
论文阅读《Block-NeRF: Scalable Large Scene Neural View Synthesis》文章来源地址https://www.toymoban.com/news/detail-435521.html

到了这里,关于论文阅读《Block-NeRF: Scalable Large Scene Neural View Synthesis》的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文阅读|OUTRAGEOUSLY LARGE NEURAL NETWORKS- THE SPARSELY-GATED MIXTURE-OF-EXPERTS LAYER

    ICLR 2017 神经网络吸收信息的能力受到其参数数量的限制。条件计算,即网络的某些部分在每个示例的基础上处于活动状态,在理论上已被提出作为一种在不按比例增加计算量的情况下大幅增加模型容量的方法。然而,在实践中,存在重大的算法和性能挑战。在这项工作中,我

    2024年02月02日
    浏览(41)
  • 论文解析——Ascend: a Scalable and Unified Architecture for Ubiquitous Deep Neural Network Computing

    H. Liao et al., “Ascend: a Scalable and Unified Architecture for Ubiquitous Deep Neural Network Computing : Industry Track Paper,” 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), Seoul, Korea (South), 2021, pp. 789-801, doi: 10.1109/HPCA51647.2021.00071. 计算核内cube、vector、scaler部件的指令同步 昇腾910包

    2024年03月11日
    浏览(90)
  • 论文笔记: NSG: Neural Scene Graphs for Dynamic Scenes

    对动态场景进行渲染,完成动态前景与背景分离、背景inpainting、动态前景编辑和新视角生成。 之前的方法如nerf只能够渲染静态场景(利用的是静态场景在多视角下的一致性),如将整张图像场景中的所有物体编码进单个神经网络中,缺乏表征动态物体和将这些物体分解为单

    2024年01月16日
    浏览(41)
  • NeRF+SLAM论文阅读笔记

    input: RGB-D contribution: 1.场景表示:多分辨率哈希网格(加速保留高频特征) 2.编码方式:one-blob(提升未观察到区域的补全能力和一致性)编码方式根据场景表示(hash网格)制定 3.改进关键帧:支持在所有关键帧上执行BA Related Work iMap:由于实时性的要求,iMap使用系数采样

    2024年02月09日
    浏览(56)
  • 【论文阅读笔记】NeRF+Mip-NeRF+Instant-NGP

    NeRF是NeRF系列的开山之作,将三维场景隐式的表达为神经网络的权重用于 新视角合成 。 MipNeRF和Instant NGP分别代表了NeRF的两个研究方向,前者是抗锯齿,代表着渲染质量提升方向;后者是采用多分辨率哈希表用于加速NeRF的训练与推理速度。 通过NeRF实现新视角合成 Title:NeR

    2024年02月04日
    浏览(68)
  • DIT: Scalable Diffusion Models with Transformers--Sora/SD3相关DIT技术论文阅读

    OpenAI发布Sora,以及Stability.AI发布的SD3,根据其技术报告,使用了可扩展的transformer扩展模型,《Scalable Diffusion Models with Transformers》是其相关的一篇重要论文。 关于DIT作者进阶的论文SIT《SiT: Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant Transformers 》介绍,下一篇

    2024年03月17日
    浏览(38)
  • 论文笔记|OUTRAGEOUSLY LARGE NEURAL NETWORKS- THE SPARSELY-GATED MIXTURE-OF-EXPERTS LAYER

    ICLR 2017 神经网络吸收信息的能力受到其参数数量的限制。条件计算,即网络的某些部分在每个示例的基础上处于活动状态,在理论上已被提出作为一种在不按比例增加计算量的情况下大幅增加模型容量的方法。然而,在实践中,存在重大的算法和性能挑战。在这项工作中,我

    2024年02月01日
    浏览(52)
  • 【论文阅读】Know Your Surroundings: Exploiting Scene Information for Object Tracking

    发表时间 :2020 期刊会议 :ECCV 方向分类 : 目标跟踪 做了什么: 本文提出了一个能够在视频序列中传播目标附近场景信息的跟踪结构,这种场景信息被用来实现提高目标预测的场景感知能力。 解决了什么问题: 已存在的跟踪器只依靠外观来跟踪,没有利用任何周围场景中

    2024年04月23日
    浏览(58)
  • 【论文阅读】Scaling Laws for Neural Language Models

    本文简要介绍 Scaling law 的主要结论 原文地址:Scaling Laws for Neural Language Models 个人认为不需要特别关注公式内各种符号的具体数值,而更应该关注不同因素之间的关系,比例等 Performance depends strongly on scale, weakly on model shape scale: 参数量 N N N , 数据量 D D D , 计算量 C C C shape: 模

    2024年02月16日
    浏览(47)
  • 论文阅读《Nougat:Neural Optical Understanding for Academic Documents》

    科学知识主要存储在书籍和科学期刊中,通常以PDF的形式。然而PDF格式会导致语义信息的损失,特别是对于数学表达式。我们提出了Nougat,这是一种视觉transformer模型,它执行OCR任务,用于将科学文档处理成标记语言,并证明了我们的模型在新的科学文档数据集上的有效性。

    2024年02月09日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包