【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

这篇具有很好参考价值的文章主要介绍了【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

下面对学生成句和表现等数据可视化分析

1:导入模块

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['simhei']
plt.rcParams['font.serif'] = ['simhei']

import warnings
warnings.filterwarnings('ignore')

2:获取数据 并打印前四行

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

from matplotlib.font_manager import FontProperties
myfont=FontProperties(fname=r'C:\Windows\Fonts\SimHei.ttf',size=12)
sns.set(font=myfont.get_name())
df = pd.read_csv('.\data\StudentPerformance.csv')
df.head(4)

 属性列表对应含义如下

Gender  性别

Nationality  国籍

PlaceofBirth 出生地

Stageid 学校级别

Gradeid 年级

Sectionid  班级

Topic 科目

semester 学期

ralation 孩子家庭教育负责人

raisedhands 学生上课举手的次数

announcementviews 学生浏览在线课件的次数

discussion 学生参与课堂讨论的次数

parentanswersurvey 家长是否填了学校的问卷

parentschoolsatisfaction 家长对于学校的满意度

studentabsencedays         学生缺勤天数

3:数据可视化分析

接下来线修改表列名 换成中文

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

df.rename(columns={'gender':'性别','NationalITy':'国籍','PlaceofBirth':'出生地',
                   'StageID':'学段','GradeID':'年级','SectionID':'班级','Topic':'科目',
                  'Semester':'学期','Relation':'监管人','raisedhands':'举手次数',
                  'VisITedResources':'浏览课件次数','AnnouncementsView':'浏览公告次数',
                  'Discussion':'讨论次数','ParentAnsweringSurvey':'父母问卷',
                  'ParentschoolSatisfaction':'家长满意度','StudentAbsenceDays':'缺勤次数',
                   'Class':'成绩'},inplace=True)
df.replace({'lowerlevel':'小学','MiddleSchool':'中学','HighSchool':'高中'},inplace=True)
df.columns

 显示学期和学段的取值

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

然后修改数据

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

df.replace({'lowerlevel':'小学','MiddleSchool':'中学','HighSchool':'高中'},inplace=True)
df['性别'].replace({'M':'男','F':'女'},inplace=True)
df['学期'].replace({'S':'春季','F':'秋季'},inplace=True)
df.head(4)

 查看空缺数据情况

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

df.isnull().sum()

查看数据统计情况

 【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

 然后按成绩绘制计数柱状图

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

sns.countplot(x = '成绩', order = ['L', 'M', 'H'], data = df, linewidth=2,edgecolor=sns.color_palette("dark",4))

 接着按性别绘制计数柱状图

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

sns.countplot(x = '性别', order = ['女', '男'],data = df)

 按科目绘制计数柱状图

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

sns.set_style('whitegrid')
sns.set(rc={'figure.figsize':(16,8)},font=myfont.get_name(),font_scale=1.5)
sns.countplot(x = '科目', data = df)

 按科目绘制不同成绩的计数柱状图

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

按性别和成绩绘制计数柱状图

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

sns.countplot(x = '性别', hue = '成绩',data = df, order = ['女', '男'], hue_order = ['L', 'M', 'H'])

按班级查看成绩分布比例

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

sns.countplot(x = '班级', hue='成绩', data=df, hue_order = ['L','M','H'])
# 从这里可以看出虽然每个班人数较少,但是没有那个班优秀的人数的比例比较突出,这个特征可以删除

 分析4个表现和成绩的相关性

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

# 了解四个课堂和课后表现与成绩的相关性
fig, axes = plt.subplots(2,2,figsize=(14,10))
sns.barplot(x='成绩', y='浏览课件次数',data=df,order=['L','M','H'],ax=axes[0,0])
sns.barplot(x='成绩', y='浏览公告次数',data=df,order=['L','M','H'],ax=axes[0,1])
sns.barplot(x='成绩', y='举手次数',data=df,order=['L','M','H'],ax=axes[1,0])
sns.barplot(x='成绩', y='讨论次数',data=df,order=['L','M','H'],ax=axes[1,1])
# 在sns.barplot中,默认的计算方式为计算平均值

 分析不同成绩学生的讨论情况

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

# 了解举手次数与成绩之间的相关性
sns.set(rc={'figure.figsize':(8,6)},font=myfont.get_name(),font_scale=1.5)
sns.boxplot(x='成绩',y='讨论次数',data=df,order=['L','M','H'])

 分析举手次数和参加讨论次数的相关性

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

# 了解四个课堂后量化表现之间的相关性
# fig,axes = plt.subplots(2,1,figsize=(10,10))
sns.regplot(x='举手次数',y='讨论次数',order =4,data=df)
# sns.regplot(x='浏览公告次数',y='浏览课件次数',order=4,data=df,ax=axes[1])   ,ax=axes[0]

 分析浏览课件次数 举手次数 浏览公告次数 讨论次数之间的相关性

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

# Correlation Matrix 相关性矩阵
corr = df[['浏览课件次数','举手次数','浏览公告次数','讨论次数']].corr()
corr         

 最后将相关矩阵用热力图可视化显示

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

# Correlation Matrix Visualization 相关性可视化
sns.heatmap(corr,xticklabels=corr.columns,yticklabels=corr.columns)

 创作不易 觉得有帮助请点赞关注收藏~~~文章来源地址https://www.toymoban.com/news/detail-435528.html

到了这里,关于【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 利用大数据分析工具,实现多场景可视化数据管理

    https://yanhuang.yuque.com/staff-sbytbc/rb5rur? 购买服务器 购买腾讯云服务器,1300 元新人价,一年时间 ●4核16G内存 ●CentOS 6.7 (补充说明:最新的 2.7.1 GA 版本,8G 内存也是可以跑的,可以先使用8G,不够再做升级)。 安装docker环境 安装docker,速度还挺快的,大概3~5分钟内 1、注册鸿

    2024年02月14日
    浏览(58)
  • python数据分析及可视化(十四)数据分析可视化练习-上市公司可视化数据分析、黑色星期五案例分析

    从中商情报网下载的数据,表格中会存在很多的问题,查看数据的信息有无缺失,然后做数据的清晰,有无重复值,异常数据,省份和城市的列名称和数据是不对照的,删除掉一些不需要的数据,省份不完整的数据,然后进行数据分析以及可视化,如上市公司中的行业Top5,用

    2024年02月03日
    浏览(58)
  • 大数据可视化——基于Python豆瓣电影数据可视化分析

    本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示,构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据,我们提供了一个全面的电影信息平台,为用户提供深入了解电影产业趋势、影片评价与演员表现的工具。项目的关键步骤包括

    2024年02月04日
    浏览(83)
  • python毕设选题 - 大数据二手房数据爬取与分析可视化 -python 数据分析 可视化

    # 1 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项

    2024年01月20日
    浏览(63)
  • python毕设选题 - 大数据上海租房数据爬取与分析可视化 -python 数据分析 可视化

    # 1 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项

    2024年02月19日
    浏览(59)
  • 大数据可视化——基于Python豆瓣电影数据可视化分析系统

    本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示,构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据,我们提供了一个全面的电影信息平台,为用户提供深入了解电影产业趋势、影片评价与演员表现的工具。项目的关键步骤包括

    2024年01月21日
    浏览(59)
  • python基于大数据的手机分析系统与可视化 -可视化大屏分析

    前言 该系统采用了多种数据源,包括用户行为数据、社交数据、市场趋势数据等,通过数据挖掘、统计分析等手段,对这些数据进行分析和建模。其中,用户行为数据包括用户使用手机的频率、时间、地理位置、应用使用情况等,社交网络数据包括用户在交网络上的行为、好

    2024年02月03日
    浏览(48)
  • Python大作业——爬虫+可视化+数据分析+数据库(可视化篇)

    相关链接 Python大作业——爬虫+可视化+数据分析+数据库(简介篇) Python大作业——爬虫+可视化+数据分析+数据库(爬虫篇) Python大作业——爬虫+可视化+数据分析+数据库(数据分析篇) Python大作业——爬虫+可视化+数据分析+数据库(数据库篇) 由于该程序会通过与数据库

    2024年02月04日
    浏览(64)
  • [数据分析与可视化] Python绘制数据地图2-GeoPandas地图可视化

    本文主要介绍GeoPandas结合matplotlib实现地图的基础可视化。GeoPandas是一个Python开源项目,旨在提供丰富而简单的地理空间数据处理接口。GeoPandas扩展了Pandas的数据类型,并使用matplotlib进行绘图。GeoPandas官方仓库地址为:GeoPandas。GeoPandas的官方文档地址为:GeoPandas-doc。关于Geo

    2023年04月09日
    浏览(48)
  • 大数据毕设分享 大数据二手房数据爬取与分析可视化 -python 数据分析 可视化

    # 1 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项

    2024年01月23日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包