springboot kafka 实现延时队列

这篇具有很好参考价值的文章主要介绍了springboot kafka 实现延时队列。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

好文推荐:
2.5万字详解23种设计模式
基于Netty搭建websocket集群实现服务器消息推送
2.5万字讲解DDD领域驱动设计


springboot kafka 实现延时队列

一、延时队列定义

延时队列:是一种消息队列,可以用于在指定时间或经过一定时间后执行某种操作。

小编已经做好了Kafka延时队列的封装,以后只需要一行代码就可以实现kafka延时队列了,代码中有详细注释,完整代码已经给大家整理好了,领取方式放在了文章末。

二、应用场景

1,订单超时自动取消:用户下单后,如果在指定时间内未完成支付,系统会自动取消订单,释放库存。
2,定时推送:比如消息通知,用户预约某个服务,系统会在服务开始前一定时间发送提醒短信。
3,定时任务:将需要定时执行的任务放入延时队列中,等到指定的时间到达时再进行执行,例如生成报表、统计数据等操作。
4,限时抢购:将限时抢购的结束时间放入延时队列中,当时间到达时自动下架商品。

三、技术实现方案:

1. Redis

1.1 优点:
①Redis的延迟队列是基于Redis的sorted set实现的,性能较高。
②Redis的延迟队列可以通过TTL设置过期时间,灵活性较高。
③简单易用,适用于小型系统。
④性能较高,支持高并发。

1.2 缺点:
①可靠性相对较低,可能会丢失消息,就算redis最高级别的持久化也是有可能丢一条的,每次请求都做aof,但是aof是异步的,所以不保证这一条操作能被持久化。
②而且Redis持久化的特性也导致其在数据量较大时,存储和查询效率逐渐降低,此时会需要对其进行分片和负载均衡。
③Redis的延迟队列需要手动实现消息重试机制,更严谨的消息队列需要数据库兜底。

1.3 应用场景:
①适用于较小规模的系统,实时性要求较高的场景。
②适用于轻量级的任务调度和消息通知场景,适合短期延迟任务,不适合长期任务,例如订单超时未支付等。

2. Kafka

2.1 优点:
①Kafka的优点在于其高并发、高吞吐量和可扩展性强,同时支持分片。
②可靠性高,支持分布式和消息持久化。
③消费者可以随时回溯消费。
④支持多个消费者并行消费、消费者组等机制。

2.2 缺点:
①没有原生的延迟队列功能,需要使用topic和消费者组来实现,实现延迟队列需要额外的开发工作。
②消费者需要主动拉取数据,可能会导致延迟,精度不是特别高。
在此案例中代码已经实现了,直接拿来使用就可以了。

2.3 应用场景:
适用于大规模的数据处理,实时性要求较高的,高吞吐量的消息处理场景。

3. RabbitMQ

3.1 优点:
①RabbitMQ的延迟队列是通过RabbitMQ的插件实现的,易于部署和使用。
②RabbitMQ的延迟队列支持消息重试和消息顺序处理,可靠性较高。
③支持消息持久化和分布式。
④支持优先级队列和死信队列。
⑤提供了丰富的插件和工具。

3.2 缺点:
①RabbitMQ的延迟队列性能较低,不适用于高吞吐量的场景。
②性能较低,不适合高并发场景。
③实现延迟队列需要额外的配置,但是配置就很简单了。

3.3应用场景:
适用于中小型的任务调度和消息通知,对可靠性要求高的场景。

4. RocketMQ

4.1 优点:
①RocketMQ的延迟队列是RocketMQ原生支持的,易于使用和部署。
②RocketMQ的延迟队列支持消息重试和消息顺序处理,可靠性较高。
③高性能和高吞吐量,支持分布式和消息持久化。
④RocketMQ使用简单,性能好,并且支持延迟队列功能。

4.2 缺点:
①RocketMQ的延迟队列不支持动态添加或删除队列。
②RocketMQ的延迟队列需要保证消息的顺序,可能会导致消息延迟。
③在节点崩溃后,RocketMQ有可能发生消息丢失。

4.3 应用场景:
①适用于大规模的数据处理,对性能和吞吐量要求较高的场景。
②适合于任务量较大、需要延迟消息和定时消息的场景。例如电商平台、社交软件等。
③适用于分布式任务调度和高可靠性消息通知场景。

四、Kafka延时队列背景

  1. 基于以上四种实现延时队列的分析来,选择对应的技术方案的基础上呢,不同公司的mq的基础设施不同,如果只有Kafka,也没必要引入RabbitMQ和RocketMq来实现,引入新的组件也会顺便带来新的问题。

  2. 网上搜Kafka实现延时队列有很多文章,很多文章说使用Kafka内部的时间轮,支持延时操作,但这是Kafka自己内部使用的,时间轮只是一个工具类,用户无法将其作为延迟队列来使用。

  3. Kafka延时队列的最佳实践,使用Kafka消费者的暂停和恢复机制来实现

五、Kafka延时队列实现思路

  1. 解决一个问题前首先要明确问题,如何让Kafka有延时队列的功能呢?
  2. 就是在Kafka消费者消费的时候延时消费,不久搞定了嘛
  3. 那如何延时消费呢,网上有些文章使用Thread.sleep进行延时消费这是不靠谱的(亲身实践),sleep的时间超过了Kafka配置的max.poll.records时间,消费者无法及时提交offset,kafka就会认为这个消费者已经挂了,会进行rebalance也就是重新分配分区给消费者,以保证每个分区只被一个消费者消费
  4. 也有同学说了,为了不发生rebalance,那可以增加max.poll.records时间啊,但是这样的话,如果要sleep几天的时间,难道max.poll.records要写几天的时间嘛,有违Kafka的设计原理了,那怎么办呢?
  5. 这时候Kafka的pause暂停消费和resume恢复消费就登场了,pause暂停某个分区之后消费者不会再poll拉取该分区的消息,直到resume恢复该分区之后才会重新poll消息。
  6. 我已经做好了Kafka延时队列的封装,以后只需要一行代码就可以实现延时队列了,代码核心使用Kafka消费者的pause函数(暂停)和resume函数(恢复)+线程池+定时任务+事件监听机制+工厂模式

六、Kafka延时队列架构图

springboot kafka 实现延时队列

七、kafka延时任务代码实现

以下代码只列出了核心实现,完整代码已经给大家整理好了,可以关注【微信公众号】微信搜索【老板来一杯java】,然后【加群】直接获取源码,在自己项目中引入即用!
源码目录:
springboot kafka 实现延时队列

1. KafkaDelayQueue:Kafka延迟队列

定义一个Kafka延期队列,包含的内容:KafkaDelayQueue,其中有延迟队列配置,主题,消费组,延迟时间,目标主题,KafkaSyncConsumer,ApplicationContext,poll线程池,delay线程池等等

package com.wdyin.kafka.delay;

import lombok.Getter;
import lombok.Setter;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.common.TopicPartition;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.ApplicationContext;
import org.springframework.scheduling.concurrent.ThreadPoolTaskScheduler;

import java.time.Duration;
import java.util.Collections;
import java.util.concurrent.ThreadPoolExecutor;

/**
 * kafka延时队列
 *
 * @Author WDYin
 * @Date 2022/7/2
 **/
@Slf4j
@Getter
@Setter
class KafkaDelayQueue<K, V> {

    private String topic;
    private String group;
    private Integer delayTime;
    private String targetTopic;
    private KafkaDelayConfig kafkaDelayConfig;
    private KafkaSyncConsumer<K, V> kafkaSyncConsumer;
    private ApplicationContext applicationContext;
    private ThreadPoolTaskScheduler threadPoolPollTaskScheduler;
    private ThreadPoolTaskScheduler threadPoolDelayTaskScheduler;
    ......
}


2. KafkaDelayQueueFactory:Kafka延迟队列工厂

Kafka延期队列的工厂,用于及其管理延迟队列

package com.wdyin.kafka.delay;

import lombok.Data;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.springframework.context.ApplicationContext;
import org.springframework.util.Assert;
import org.springframework.util.StringUtils;

import java.util.Properties;

/**
 * 延时队列工厂
 * @author WDYin
 * @date 2023/4/17
 **/
@Data
public class KafkaDelayQueueFactory {

    private KafkaDelayConfig kafkaDelayConfig;
    private Properties properties;
    private ApplicationContext applicationContext;
    private Integer concurrency;

    public KafkaDelayQueueFactory(Properties properties, KafkaDelayConfig kafkaDelayConfig) {
        Assert.notNull(properties, "properties cannot null");
        Assert.notNull(kafkaDelayConfig.getDelayThreadPool(), "delayThreadPool cannot null");
        Assert.notNull(kafkaDelayConfig.getPollThreadPool(), "pollThreadPool cannot null");
        Assert.notNull(kafkaDelayConfig.getPollInterval(), "pollInterval cannot null");
        Assert.notNull(kafkaDelayConfig.getPollTimeout(), "timeout cannot null");
        this.properties = properties;
        this.kafkaDelayConfig = kafkaDelayConfig;
    }

    public void listener(String topic, String group, Integer delayTime, String targetTopic) {
        if (StringUtils.isEmpty(topic)) {
            throw new RuntimeException("topic cannot empty");
        }
        if (StringUtils.isEmpty(group)) {
            throw new RuntimeException("group cannot empty");
        }
        if (StringUtils.isEmpty(delayTime)) {
            throw new RuntimeException("delayTime cannot empty");
        }
        if (StringUtils.isEmpty(targetTopic)) {
            throw new RuntimeException("targetTopic cannot empty");
        }
        KafkaSyncConsumer<String, String> kafkaSyncConsumer = createKafkaSyncConsumer(group);
        KafkaDelayQueue<String, String> kafkaDelayQueue = createKafkaDelayQueue(topic, group, delayTime, targetTopic, kafkaSyncConsumer);
        kafkaDelayQueue.send();
    }

    private KafkaDelayQueue<String, String> createKafkaDelayQueue(String topic, String group, Integer delayTime, String targetTopic, KafkaSyncConsumer<String, String> kafkaSyncConsumer) {
        KafkaDelayQueue<String, String> kafkaDelayQueue = new KafkaDelayQueue<>(kafkaSyncConsumer, kafkaDelayConfig);
        Assert.notNull(applicationContext, "kafkaDelayQueue need applicationContext");
        kafkaDelayQueue.setApplicationContext(applicationContext);
        kafkaDelayQueue.setDelayTime(delayTime);
        kafkaDelayQueue.setTopic(topic);
        kafkaDelayQueue.setGroup(group);
        kafkaDelayQueue.setTargetTopic(targetTopic);
        return kafkaDelayQueue;
    }

    private KafkaSyncConsumer<String, String> createKafkaSyncConsumer(String group) {
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, group);
        return new KafkaSyncConsumer<>(properties);
    }

}

3. KafkaPollListener:Kafka延迟队列事件监听

package com.wdyin.kafka.delay;

import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.OffsetAndMetadata;
import org.apache.kafka.common.TopicPartition;
import org.springframework.context.ApplicationListener;
import org.springframework.kafka.core.KafkaTemplate;

import java.time.Instant;
import java.time.LocalDateTime;
import java.time.ZoneId;
import java.util.*;

/**
 * 延时队列监听
 * @Author : WDYin
 * @Date : 2021/5/7
 * @Desc :
 */
@Slf4j
public class KafkaPollListener<K, V> implements ApplicationListener<KafkaPollEvent<K, V>> {

    private KafkaTemplate kafkaTemplate;

    public KafkaPollListener(KafkaTemplate kafkaTemplate) {
        this.kafkaTemplate = kafkaTemplate;
    }

    @Override
    public void onApplicationEvent(KafkaPollEvent<K, V> event) {
        ConsumerRecords<K, V> records = (ConsumerRecords<K, V>) event.getSource();
        Integer delayTime = event.getDelayTime();
        KafkaDelayQueue<K, V> kafkaDelayQueue = event.getKafkaDelayQueue();
        KafkaSyncConsumer<K, V> kafkaSyncConsumer = kafkaDelayQueue.getKafkaSyncConsumer();
        Set<TopicPartition> partitions = records.partitions();
        Map<TopicPartition, OffsetAndMetadata> commitMap = new HashMap<>();
        partitions.forEach((partition) -> {
            List<ConsumerRecord<K, V>> consumerRecords = records.records(partition);
            for (ConsumerRecord<K, V> record : consumerRecords) {
                long startTime = (record.timestamp() / 1000) * 1000;
                long endTime = startTime + delayTime;
                long now = System.currentTimeMillis();
                if (endTime > now) {
                    kafkaSyncConsumer.pauseAndSeek(partition, record.offset());
                    kafkaDelayQueue.getThreadPoolPollTaskScheduler().schedule(kafkaDelayQueue.delayTask(partition), new Date(endTime));
                    break;
                }
                log.info("{}: partition:{}, offset:{}, key:{}, value:{}, messageDate:{}, nowDate:{}, messageDate:{}, nowDate:{}",
                        Thread.currentThread().getName() + "#" + Thread.currentThread().getId(), record.topic() + "-" + record.partition(), record.offset(), record.key(), record.value(), LocalDateTime.ofInstant(Instant.ofEpochMilli(startTime), ZoneId.systemDefault()), LocalDateTime.now(), startTime, Instant.now().getEpochSecond());
                kafkaTemplate.send(kafkaDelayQueue.getTargetTopic(), record.value());
                commitMap.put(partition, new OffsetAndMetadata(record.offset() + 1));
            }
        });
        if (!commitMap.isEmpty()) {
            kafkaSyncConsumer.commit(commitMap);
        }
    }
}

4. KafkaDelayConfig:Kafka延时配置

package com.wdyin.kafka.delay;

import lombok.Data;

/**
 * 延时队列配置
 * @author WDYin
 * @date 2023/4/16
 **/
@Data
public class KafkaDelayConfig {

    private Integer pollInterval;
    private Integer pollTimeout;
    private Integer pollThreadPool;
    private Integer delayThreadPool;

    public KafkaDelayConfig() {
    }
    ......
}


八. 如何使用kafka延时队列

自己项目中引入以上代码之后,使用KafkaDelayApplication:一个Kafka延迟任务注册程序,注意一个延时主题对应一个延迟时间,后续有新的延迟任务只需要在此注册延迟任务的监听即可!开箱即用!
使用流程:

  1. 生产者发送消息到【延时主题】——自己写
  2. 然后Kafka将消息从【延时主题】经过【延时时间】后发送到【目标主题】——以下代码
  3. 自己创建消费者消费【目标主题】——自己写
import org.springframework.stereotype.Component;

import javax.annotation.PostConstruct;
import javax.annotation.Resource;

/**
 * @author WDYin
 * @date 2023/4/18
 **/
@Component
public class KafkaDelayApplication {

    @Resource
    private KafkaDelayQueueFactory kafkaDelayQueueFactory;

	/**
     * 延迟任务都可以配置在这里
     * Kafka将消息从【延时主题】经过【延时时间】后发送到【目标主题】
     */
    @PostConstruct
    public void init() {
        //延迟30秒
        kafkaDelayQueueFactory.listener("delay-30-second-topic", "delay-30-second-group", 1 * 30 * 1000, "delay-60-second-target-topic");
        //延迟60秒
        kafkaDelayQueueFactory.listener("delay-60-second-topic", "delay-60-second-group", 1 * 60 * 1000, "delay-60-second-target-topic");
        //延迟30分钟
        kafkaDelayQueueFactory.listener("delay-30-minute-topic", "delay-30-minute-group", 30 * 60 * 1000, "delay-30-minute-target-topic");
    }
}

九、测试

  1. 先往延时主题【delay-60-second-topic】发送一千条消息,一共10个分区,每个分区100条消息,消息时间是2023-04-21 16:37:26分,延迟消息消费时间就应该是2023-04-21 16:38:26
    springboot kafka 实现延时队列
  2. 延时队列进行消费:通过日志查看,消息日期和延迟队列消费消息时间正好相差一分钟
    springboot kafka 实现延时队列

十、总结

  1. 本案例已成功实现Kafka的延时队列,并进行实测,代码引入可用非常方便。
  2. Kafka实现的延时队列支持秒级别的延时任务,不支持毫秒级别,但是毫秒级别的延时任务也没有意义
  3. 注意一个主题对应的延时时间是一致的,不能在同一个主题里放不同时间的延时任务。
  4. 此方案的缺点就是,如果数据量极大,生产者生产消息速度很快,一定要保证Kafka的消费能力,否则可能会导致延迟,精度不是特别高,不过如果延迟秒级的任务,差个几毫秒肯定可以接受的,一般场景肯定满足。
  5. 完整代码已经给大家整理好了,可以关注【微信公众号】微信搜索【老板来一杯java】,然后【加群】直接获取源码。

好文推荐:
2.5万字详解23种设计模式
微服务springcloud环境下基于Netty搭建websocket集群实现服务器消息推送----netty是yyds
2.5万字讲解DDD领域驱动设计文章来源地址https://www.toymoban.com/news/detail-435557.html

到了这里,关于springboot kafka 实现延时队列的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于springboot图书个性化推荐系统的设计与实现【附ppt和万字文档(Lun文)和搭建文档】

    前台登录: ①首页:图书名称查询、图书信息推荐、好书推荐、图书信息展示 ②图书信息:图书类别、图书名称、名称类别作者查询、图书详情、收藏、点赞、评论 ③好书推荐:图书展示、点击查看 ④留言反馈:用户可以进行留言反馈 ⑤个人中心:可以查看自己的信息、

    2024年02月13日
    浏览(47)
  • 创建延时队列、springboot配置多个rabbitmq

    type选择fanout (图中已经绑定,红框为绑定过程) (图中已经绑定,红框为绑定过程) 延时队列时间到之后,将消息发送给queue.file_destroy,执行删除文件操作 RabbitConfig配置类 mq1 mq2 application-prod.yaml mq1消费端,发消息给mq2 mq2消费端用于递归删除文件 FileHelper工具类递归删除文件或文

    2024年02月11日
    浏览(39)
  • 万字好文:大报文问题实战

    大报文问题,在京东物流内较少出现,但每次出现往往是大事故,甚至导致上下游多个系统故障。大报文的背后,是不同商家业务体量不同,特别是B端业务的采购及销售出库单,一些头部商家对京东系统支持业务复杂度及容量能力的要求越来越高。因此我们有必要把这个问题

    2024年02月16日
    浏览(30)
  • 【项目实战】SpringBoot整合Kafka消息队列(基于KafkaTemplate和@KafkaListener实现)

    Apache Kafka是分布式发布-订阅消息系统。 它最初由LinkedIn公司开发,之后成为Apache项目的一部分。 Kafka是一种快速、可扩展的、设计内在就是分布式的,分区的和可复制的提交日志服务。 Apache Kafka与传统消息系统相比,有以下不同: 它将消息持久化到磁盘,因此可用于批量消

    2023年04月09日
    浏览(42)
  • Rabbitmq死信队列及延时队列实现

    问题:什么是延迟队列 我们常说的延迟队列是指消息进入队列后不会被立即消费,只有达到指定时间后才能被消费。 但RabbitMq中并 没有提供延迟队列功能 。那么RabbitMQ如何实现延迟队列 通过:死信队列 + RabbitMQ的TTL特性实现。 实现原理 给一个普通带有过期功能的队列绑定一

    2024年02月15日
    浏览(47)
  • 【docker深入浅出】一文学透Docker基础万字好文

    Docker 最初是 dotCloud 公司创始人 Solomon Hykes 在法国期间发起的一个公司内部项目,它是基于 dotCloud 公司多年云服务技术的一次革新,并与2013年3月以Apache 2.0授权协议开源),主要项目代码在GitHub上进行维护。Docker项目后来还加入了 Linux 基金会,并成立推动开放容器联盟。 D

    2024年02月15日
    浏览(41)
  • 关于matlab好文推荐

    “Matlab”是“Matrix Laboratory” 的缩写,中文“矩阵实验室”,是强大的数学工具。本文侧重于Matlab的编程语言侧面,讲述Matlab的基本语法,以及用Matlab语言进行程序设计。值得一提的是,Matlab从R2014a版本开始支持中文语言了! https://www.cnblogs.com/shenben/p/11246747.html https://www.cn

    2024年02月04日
    浏览(36)
  • RabbitMQ如何实现延时队列

    RabbitMQ是目前最为流行的消息队列之一,它的高可靠性、高可用性和高性能使得它成为众多应用场景下的首选。在实际应用中,我们经常需要实现延时队列来解决一些业务问题,比如订单超时未支付自动取消等。本文将介绍如何使用RabbitMQ实现延时队列。 1. 延时队列的概念 延

    2024年02月16日
    浏览(38)
  • 基于redis实现延时队列(二)

    上篇文章中使用了redis的zset+定时器实现延时任务,虽然定时器设置为30秒执行一次,但是还是有时间上的差异化;现更换一种方式实现,可以避免时间上的差异。 redis的key过期回调事件,也能达到延迟队列效果 redis的key过期回调事件:我们需要修改配置,监听key是否过期,若

    2024年02月13日
    浏览(32)
  • Java实现Redis延时队列

    “如何实现Redis延时队列”这个面试题应该也是比较常见的,解答如下: 使用sortedset(有序集合) ,拿时间戳作为 score ,消息内容作为key 调用 zadd 来生产消息,消费者用zrangebyscore 指令获取 N 秒之前的数据轮询进行处理。 Java实现Redis延时队列,首先要了解何为延时队列,即

    2024年02月20日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包