题目要求:学习了解单目深度估计模型MonoDepthv2,基于NCNN推理框架部署到小米手机
MonoDepthv2 论文:Digging Into Self-Supervised Monocular Depth Estimation
MonoDepthv2 源码:Monodepth2 GitHub
分析:
1)了解MonoDepthv2的基本原理和代码理解
2)将模型转化为更加方便高效的NCNN模型并在小米手机端完成推理过程
- 结果展示:
-
参考代码
nihui/ncnn-android-nanodet -
模型转换
一键转换 onnx2ncnn -
包依赖
opencv-mobile-4.6.0-android (版本可选)
ncnn-20230223-android-vulkan (版本可选) -
软件环境
Android Studio, SDK Platforms: Android 11, 12, 13; SDK tools, NDK tools -
工程目录(重点修改部分已经标红)
-
具体修改项文章来源:https://www.toymoban.com/news/detail-435827.html
- CMakeLists.txt
project(nanodetncnn) cmake_minimum_required(VERSION 3.10) set(OpenCV_DIR ${CMAKE_SOURCE_DIR}/opencv-mobile-4.6.0-android/sdk/native/jni) find_package(OpenCV REQUIRED core imgproc) set(ncnn_DIR ${CMAKE_SOURCE_DIR}/ncnn-20230223-android-vulkan/${ANDROID_ABI}/lib/cmake/ncnn) find_package(ncnn REQUIRED) add_library(nanodetncnn SHARED nanodetncnn.cpp nanodet.cpp ndkcamera.cpp) target_link_libraries(nanodetncnn ncnn ${OpenCV_LIBS} camera2ndk mediandk)
- nanodet.cpp (#59)设置模型输入输出尺寸
int NanoDet::detect(cv::Mat& rgb) { ncnn::Mat in = ncnn::Mat::from_pixels_resize(rgb.data, ncnn::Mat::PIXEL_RGB, rgb.cols, rgb.rows,640, 192); in.substract_mean_normalize(mean_vals, norm_vals); ncnn::Extractor ex = nanodet.create_extractor(); ex.input("input", in); ncnn::Mat model_out; ex.extract("output", model_out); cv::Mat out(192, 640, CV_32FC1, model_out.data);
- string.xml
<?xml version="1.0" encoding="utf-8"?> <resources> <string name="app_name">nanodetncnn</string> <string-array name="model_array"> <item>MonoDepthv2</item> <!-- <item>MobilenetV2-Wave</item>--> <!-- <item>DenseNet</item>--> <!-- <item>DenseNet-Wave</item>--> </string-array> <string-array name="cpugpu_array"> <item>CPU</item> <item>GPU</item> </string-array> </resources>
- nanodetncnn.cpp (#170) 设置模型路径和设备cpugpu选项
JNIEXPORT jboolean JNICALL Java_com_tencent_nanodetncnn_NanoDetNcnn_loadModel(JNIEnv* env, jobject thiz, jobject assetManager, jint modelid, jint cpugpu) { // 检查一下选的模型和设备是不是在范围 if (modelid < 0 || modelid > 2 || cpugpu < 0 || cpugpu > 1) { return JNI_FALSE; } AAssetManager* mgr = AAssetManager_fromJava(env, assetManager); __android_log_print(ANDROID_LOG_DEBUG, "ncnn", "loadModel %p", mgr); const char* modeltypes[] = {"mono-sim-opt", };
- gradle-wrapper.properties
distributionBase=GRADLE_USER_HOME distributionPath=wrapper/dists zipStoreBase=GRADLE_USER_HOME zipStorePath=wrapper/dists #distributionUrl=https\://services.gradle.org/distributions/gradle-5.4.1-all.zip distributionUrl=https\://mirrors.cloud.tencent.com/gradle/gradle-5.4.1-all.zip
- local.properties
## This file must *NOT* be checked into Version Control Systems, # as it contains information specific to your local configuration. # # Location of the SDK. This is only used by Gradle. # For customization when using a Version Control System, please read the # header note. #Tue Apr 11 21:28:46 CST 2023 sdk.dir=\\path\\to\\AppData\\Local ndk.dir=\\path\\to\\AppData\\Local\\ndk\\22.1.7171670
-
小结
1)Android Studio 配置过程会出现各种问题,需要耐心解决。如网络问题,SDK,NDK等路径配置问题;
2)Android Studio检测手机设备时,需要检测相应的硬件环境,软件环境等一致;文章来源地址https://www.toymoban.com/news/detail-435827.html
到了这里,关于NCNN----Monodepthv2单目深度估计 小米手机部署的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!