【FPGA实验】基于DE2-115平台的VGA显示

这篇具有很好参考价值的文章主要介绍了【FPGA实验】基于DE2-115平台的VGA显示。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一.VGA介绍

VGA(Video Graphics Array)视频图形阵列是IBM于1987年提出的一个使用模拟信号的电脑显示标准。VGA接口即电脑采用VGA标准输出数据的专用接口。VGA接口共有15针,分成3排,每排5个孔,显卡上应用最为广泛的接口类型,绝大多数显卡都带有此种接口。它传输红、绿、蓝模拟信号以及同步信号(水平和垂直信号)。

VGA接口是一种D型接口,上面共有15针孔,分成三排,每排五个。 其中,除了2根NC(Not Connect)信号、3根显示数据总线和5个GND信号,比较重要的是3根RGB彩色分量信号和2根扫描同步信号HSYNC和VSYNC针。VGA接口中彩色分量采用RS343电平标准。RS343电平标准的峰值电压为1V。VGA接口是显卡上应用最为广泛的接口类型,多数的显卡都带有此种接口。有些不带VGA接口而带有DVI(Digital Visual Interface数字视频接口)接口的显卡,也可以通过一个简单的转接头将DVI接口转成VGA接口,通常没有VGA接口的显卡会附赠这样的转接头。
【FPGA实验】基于DE2-115平台的VGA显示
大多数计算机与外部显示设备之间都是通过模拟VGA接口连接,计算机内部以数字方式生成的显示图像信息,被显卡中的数字/模拟转换器转变为R、G、B三原色信号和行、场同步信号,信号通过电缆传输到显示设备中。对于模拟显示设备,如模拟CRT显示器,信号被直接送到相应的处理电路,驱动控制显像管生成图像。而对于LCD、DLP等数字显示设备,显示设备中需配置相应的A/D(模拟/数字)转换器,将模拟信号转变为数字信号。在经过D/A和A/D两次转换后,不可避免地造成了一些图像细节的损失。VGA接口应用于CRT显示器无可厚非,但用于连接液晶之类的显示设备,则转换过程的图像损失会使显示效果略微下降。
而且可以从接口处来判断显卡是独显还是集成显卡,VGA接口竖置的说明是集成显卡,VGA接口横置说明是独立显卡(一般的台式主机都可以用此方法来查看)。

管脚定义:

管脚 定义
1 红基色
2 绿基色
3 蓝基色
4 地址码 ID Bit
5 自测试
6 红地
7 绿地
8 蓝地
9 保留(各家定义不同)
10 数字码
11 地址码
12 地址码
13 行同步
14 场同步
15 地址码(各家定义不同)

VGA显示原理:
VGA通过引脚的模拟电压(0V-0.714V)显示红绿蓝三种颜色,不同的电压值对应不同的颜色。
VGA驱动显示器用的是扫描的方式,一般是逐行扫描。
逐行扫描是扫描从屏幕左上角一点开始,从左像右逐点扫描,每扫描完一行,电子束回到屏幕的左边下一行的起始位置,在这期间,CRT对电子束进行消隐,每行结束时,用行同步信号进行同步;
当扫描完所有的行,形成一帧后,用场同步信号进行场同步,并使扫描回到屏幕左上方,同时进行场消隐,开始下一帧。
【FPGA实验】基于DE2-115平台的VGA显示
FPGA芯片驱动VGA显示,需要先产生模拟信号,这就要借助数模转换器D/A,利用D/A产生模拟信号,输出至VGA的RED、GREEN、BLUE基色数据线。另一种方法是利用电阻网络分流模拟D/A实现的。
具体颜色对应的电压值:
【FPGA实验】基于DE2-115平台的VGA显示
利用电阻网络分流模拟D/A:
参考:https://blog.csdn.net/qq_40147893/article/details/108342484

VGA通信协议:
【FPGA实验】基于DE2-115平台的VGA显示
VS:帧时序
帧时序的四个部分别是:同步脉冲(Sync o)、显示后沿(Back porch p)、显示时序段(Display interval q)和显示前沿(Front porchr)。其中同步脉冲(Sync o)、显示后沿(Back porch p)和显示前沿(Front porch r)是消隐区,RGB信号无效,屏幕不显示数据。显示时序段(Display interval q)是有效数据区。
【FPGA实验】基于DE2-115平台的VGA显示

HS:行时序
行时序的四个部分分别是:同步脉冲(Sync a)、显示后沿(Back porch b)、显示时序(Display interval c)和显示前沿(Front porchd)。其中同步脉冲(Sync a)、显示后沿(Back porch b)和显示前沿(Front porch d)是消隐区,RGB信号无效,屏幕不显示数据。显示时序段(Display interval c)是有效数据区。
【FPGA实验】基于DE2-115平台的VGA显示
VGA时序解析:
【FPGA实验】基于DE2-115平台的VGA显示

二.VGA显示字符

该部分使用了EP4CE115F29C7
这里使用到了汉子点阵,之前学习过OLED的汉字显示,这里会用到同样的汉字点阵提取,可以参考链接:https://blog.csdn.net/qq_45659777/article/details/121456548
【FPGA实验】基于DE2-115平台的VGA显示
【FPGA实验】基于DE2-115平台的VGA显示
【FPGA实验】基于DE2-115平台的VGA显示
说明:

这里使用点阵显示时,汉字是1616点阵,而符号或是数字或是英文字母是3216点阵。
点阵拼接时,用第一个字的前4位拼上下一个字的前4位…一直到最后一个字,它们构成VGA显示的一行。

代码实现:

module VGA_test(
OSC_50,     //原CLK2_50时钟信号
VGA_CLK,    //VGA自时钟
VGA_HS,     //行同步信号
VGA_VS,     //场同步信号
VGA_BLANK,  //复合空白信号控制信号  当BLANK为低电平时模拟视频输出消隐电平,此时从R9~R0,G9~G0,B9~B0输入的所有数据被忽略
VGA_SYNC,   //符合同步控制信号      行时序和场时序都要产生同步脉冲
VGA_R,      //VGA绿色
VGA_B,      //VGA蓝色
VGA_G);     //VGA绿色
 input OSC_50;     //外部时钟信号CLK2_50
 output VGA_CLK,VGA_HS,VGA_VS,VGA_BLANK,VGA_SYNC;
 output [7:0] VGA_R,VGA_B,VGA_G;
 parameter H_FRONT = 16;     //行同步前沿信号周期长
 parameter H_SYNC = 96;      //行同步信号周期长
 parameter H_BACK = 48;      //行同步后沿信号周期长
 parameter H_ACT = 640;      //行显示周期长
 parameter H_BLANK = H_FRONT+H_SYNC+H_BACK;        //行空白信号总周期长
 parameter H_TOTAL = H_FRONT+H_SYNC+H_BACK+H_ACT;  //行总周期长耗时
 parameter V_FRONT = 11;     //场同步前沿信号周期长
 parameter V_SYNC = 2;       //场同步信号周期长
 parameter V_BACK = 31;      //场同步后沿信号周期长
 parameter V_ACT = 480;      //场显示周期长
 parameter V_BLANK = V_FRONT+V_SYNC+V_BACK;        //场空白信号总周期长
 parameter V_TOTAL = V_FRONT+V_SYNC+V_BACK+V_ACT;  //场总周期长耗时
 reg [10:0] H_Cont;        //行周期计数器
 reg [10:0] V_Cont;        //场周期计数器
 wire [7:0] VGA_R;         //VGA红色控制线
 wire [7:0] VGA_G;         //VGA绿色控制线
 wire [7:0] VGA_B;         //VGA蓝色控制线
 reg VGA_HS;
 reg VGA_VS;
 reg [10:0] X;             //当前行第几个像素点
 reg [10:0] Y;             //当前场第几行
 reg CLK_25;
 always@(posedge OSC_50)
    begin 
      CLK_25=~CLK_25;         //时钟
    end 
    assign VGA_SYNC = 1'b0;   //同步信号低电平
    assign VGA_BLANK = ~((H_Cont<H_BLANK)||(V_Cont<V_BLANK));  //当行计数器小于行空白总长或场计数器小于场空白总长时,空白信号低电平
    assign VGA_CLK = ~CLK_to_DAC;  //VGA时钟等于CLK_25取反
    assign CLK_to_DAC = CLK_25;
 always@(posedge CLK_to_DAC)
    begin
        if(H_Cont<H_TOTAL)           //如果行计数器小于行总时长
            H_Cont<=H_Cont+1'b1;      //行计数器+1
        else H_Cont<=0;              //否则行计数器清零
        if(H_Cont==H_FRONT-1)        //如果行计数器等于行前沿空白时间-1
            VGA_HS<=1'b0;             //行同步信号置0
        if(H_Cont==H_FRONT+H_SYNC-1) //如果行计数器等于行前沿+行同步-1
            VGA_HS<=1'b1;             //行同步信号置1
        if(H_Cont>=H_BLANK)          //如果行计数器大于等于行空白总时长
            X<=H_Cont-H_BLANK;        //X等于行计数器-行空白总时长   (X为当前行第几个像素点)
        else X<=0;                   //否则X为0
    end
 always@(posedge VGA_HS)
    begin
        if(V_Cont<V_TOTAL)           //如果场计数器小于行总时长
            V_Cont<=V_Cont+1'b1;      //场计数器+1
        else V_Cont<=0;              //否则场计数器清零
        if(V_Cont==V_FRONT-1)       //如果场计数器等于场前沿空白时间-1
            VGA_VS<=1'b0;             //场同步信号置0
        if(V_Cont==V_FRONT+V_SYNC-1) //如果场计数器等于行前沿+场同步-1
            VGA_VS<=1'b1;             //场同步信号置1
        if(V_Cont>=V_BLANK)          //如果场计数器大于等于场空白总时长
            Y<=V_Cont-V_BLANK;        //Y等于场计数器-场空白总时长    (Y为当前场第几行)  
        else Y<=0;                   //否则Y为0
    end
    reg valid_yr;
 always@(posedge CLK_to_DAC)
    if(V_Cont == 10'd32)         //场计数器=32时
        valid_yr<=1'b1;           //行输入激活
    else if(V_Cont==10'd512)     //场计数器=512时
        valid_yr<=1'b0;           //行输入冻结
    wire valid_y=valid_yr;       //连线   
    reg valid_r;            
 always@(posedge CLK_to_DAC)   
    if((H_Cont == 10'd32)&&valid_y)     //行计数器=32时
        valid_r<=1'b1;                   //像素输入激活
    else if((H_Cont==10'd512)&&valid_y) //行计数器=512时 
        valid_r<=1'b0;                   //像素输入冻结
    wire valid = valid_r;               //连线
    wire[10:0] x_dis;     //像素显示控制信号
    wire[10:0] y_dis;     //行显示控制信号
    assign x_dis=X;       //连线X
    assign y_dis=Y;       //连线Y
        parameter

    char_line00=240'h010010400000000000000000000000000000000000000000000000000000,
    char_line01=240'h010010400000000000000000000000000000000000000000000000000000,
    char_line02=240'h7FFCFE780000000000000000000000000000000000000000000000000000,
    char_line03=240'h03801088000007F00FE000800FE007E01FFC07E007F007E00FE000800080,
    char_line04=240'h05407C100000081830180780301818183008181808181818301807800780,
    char_line05=240'h092011FC0000100038180180300C381C2010381C1000381C381801800180,
    char_line06=240'h3118FE240000300000180180700C300C0020300C3000300C001801800180,
    char_line07=240'hC10600247FFE37F000600180301C300C0040300C37F0300C006001800180,
    char_line08=240'h0FE07DFE0000380C01F00180382C300C0080300C380C300C01F001800180,
    char_line09=240'h004044240000300C001801800FCC300C0180300C300C300C001801800180,
    char_line0a=240'h00807C240000300C000C0180001C300C0300300C300C300C000C01800180,
    char_line0b=240'hFFFE45FC0000300C380C01800018381803003818300C3818380C01800180,
    char_line0c=240'h01007C24000018183018018038301C1003801C1018181C10301801800180,
    char_line0d=240'h01004420000007E00FE00FF80FC007E0030007E007E007E00FE00FF80FF8,
    char_line0e=240'h050054A00000000000000000000000000000000000000000000000000000,
    char_line0f=240'h020048400000000000000000000000000000000000000000000000000000;

    reg[7:0] char_bit;
    always@(posedge CLK_to_DAC)
        if(X==10'd180)char_bit<=9'd240;   //当显示到144像素时准备开始输出图像数据
        else if(X>10'd180&&X<10'd420)     //左边距屏幕144像素到416像素时    416=144+272(图像宽度)
            char_bit<=char_bit-1'b1;       //倒着输出图像信息
            
    reg[29:0] vga_rgb;                //定义颜色缓存
    always@(posedge CLK_to_DAC) 
        if(X>10'd180&&X<10'd420)    //X控制图像的横向显示边界:左边距屏幕左边144像素  右边界距屏幕左边界416像素
            begin case(Y)            //Y控制图像的纵向显示边界:从距离屏幕顶部160像素开始显示第一行数据
                10'd200:
                if(char_line00[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;  //如果该行有数据 则颜色为红色
                else vga_rgb<=30'b0000000000_0000000000_0000000000;                      //否则为黑色
                10'd201:
                if(char_line01[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd202:
                if(char_line02[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd203:
                if(char_line03[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd204:
                if(char_line04[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000; 
                10'd205:
                if(char_line05[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd206:
                if(char_line06[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000; 
                10'd207:
                if(char_line07[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd208:
                if(char_line08[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000; 
                10'd209:
                if(char_line09[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd210:
                if(char_line0a[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd211:
                if(char_line0b[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd212:
                if(char_line0c[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd213:
                if(char_line0d[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd214:
                if(char_line0e[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd215:
                if(char_line0f[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                default:vga_rgb<=30'h0000000000;   //默认颜色黑色
            endcase 
        end
    else vga_rgb<=30'h000000000;             //否则黑色
    assign VGA_R=vga_rgb[23:16];
    assign VGA_G=vga_rgb[15:8];
    assign VGA_B=vga_rgb[7:0];
endmodule


运行效果:
【FPGA实验】基于DE2-115平台的VGA显示

三.VGA显示彩色条纹

该部分使用了EP4CE115F29C7
说明:

在上述代码的基础上,通过限制x的取值范围让颜色缓存显示不同的值就能实现显示彩色条纹。

module VGA_colorbar_test(
OSC_50,     //原CLK2_50时钟信号
VGA_CLK,    //VGA自时钟
VGA_HS,     //行同步信号
VGA_VS,     //场同步信号
VGA_BLANK,  //复合空白信号控制信号  当BLANK为低电平时模拟视频输出消隐电平,此时从R9~R0,G9~G0,B9~B0输入的所有数据被忽略
VGA_SYNC,   //符合同步控制信号      行时序和场时序都要产生同步脉冲
VGA_R,      //VGA绿色
VGA_B,      //VGA蓝色
VGA_G);     //VGA绿色
 input OSC_50;     //外部时钟信号CLK2_50
 output VGA_CLK,VGA_HS,VGA_VS,VGA_BLANK,VGA_SYNC;
 output [7:0] VGA_R,VGA_B,VGA_G;
 parameter H_FRONT = 16;     //行同步前沿信号周期长
 parameter H_SYNC = 96;      //行同步信号周期长
 parameter H_BACK = 48;      //行同步后沿信号周期长
 parameter H_ACT = 640;      //行显示周期长
 parameter H_BLANK = H_FRONT+H_SYNC+H_BACK;        //行空白信号总周期长
 parameter H_TOTAL = H_FRONT+H_SYNC+H_BACK+H_ACT;  //行总周期长耗时
 parameter V_FRONT = 11;     //场同步前沿信号周期长
 parameter V_SYNC = 2;       //场同步信号周期长
 parameter V_BACK = 31;      //场同步后沿信号周期长
 parameter V_ACT = 480;      //场显示周期长
 parameter V_BLANK = V_FRONT+V_SYNC+V_BACK;        //场空白信号总周期长
 parameter V_TOTAL = V_FRONT+V_SYNC+V_BACK+V_ACT;  //场总周期长耗时
 reg [10:0] H_Cont;        //行周期计数器
 reg [10:0] V_Cont;        //场周期计数器
 wire [7:0] VGA_R;         //VGA红色控制线
 wire [7:0] VGA_G;         //VGA绿色控制线
 wire [7:0] VGA_B;         //VGA蓝色控制线
 reg VGA_HS;
 reg VGA_VS;
 reg [10:0] X;             //当前行第几个像素点
 reg [10:0] Y;             //当前场第几行
 reg CLK_25;
 always@(posedge OSC_50)begin 
      CLK_25=~CLK_25;         //时钟
 end 

 assign VGA_SYNC = 1'b0;   //同步信号低电平
 assign VGA_BLANK = ~((H_Cont<H_BLANK)||(V_Cont<V_BLANK));  //当行计数器小于行空白总长或场计数器小于场空白总长时,空白信号低电平
 assign VGA_CLK = ~CLK_to_DAC;  //VGA时钟等于CLK_25取反
 assign CLK_to_DAC = CLK_25;

 always@(posedge CLK_to_DAC)begin
        if(H_Cont<H_TOTAL)           //如果行计数器小于行总时长
            H_Cont<=H_Cont+1'b1;      //行计数器+1
        else H_Cont<=0;              //否则行计数器清零
        if(H_Cont==H_FRONT-1)        //如果行计数器等于行前沿空白时间-1
            VGA_HS<=1'b0;             //行同步信号置0
        if(H_Cont==H_FRONT+H_SYNC-1) //如果行计数器等于行前沿+行同步-1
            VGA_HS<=1'b1;             //行同步信号置1
        if(H_Cont>=H_BLANK)          //如果行计数器大于等于行空白总时长
            X<=H_Cont-H_BLANK;        //X等于行计数器-行空白总时长   (X为当前行第几个像素点)
        else X<=0;                   //否则X为0
end

 always@(posedge VGA_HS)begin
        if(V_Cont<V_TOTAL)           //如果场计数器小于行总时长
            V_Cont<=V_Cont+1'b1;      //场计数器+1
        else V_Cont<=0;              //否则场计数器清零
        if(V_Cont==V_FRONT-1)       //如果场计数器等于场前沿空白时间-1
            VGA_VS<=1'b0;             //场同步信号置0
        if(V_Cont==V_FRONT+V_SYNC-1) //如果场计数器等于行前沿+场同步-1
            VGA_VS<=1'b1;             //场同步信号置1
        if(V_Cont>=V_BLANK)          //如果场计数器大于等于场空白总时长
            Y<=V_Cont-V_BLANK;        //Y等于场计数器-场空白总时长    (Y为当前场第几行)  
        else Y<=0;                   //否则Y为0
end

 reg valid_yr;

 always@(posedge CLK_to_DAC)begin
    if(V_Cont == 10'd32)         //场计数器=32时
        valid_yr<=1'b1;           //行输入激活
    else if(V_Cont==10'd512)     //场计数器=512时
        valid_yr<=1'b0;           //行输入冻结
 end

 wire valid_y=valid_yr;       //连线   
 reg valid_r;     

 always@(posedge CLK_to_DAC)begin
    if((H_Cont == 10'd32)&&valid_y)     //行计数器=32时
        valid_r<=1'b1;                   //像素输入激活
    else if((H_Cont==10'd512)&&valid_y) //行计数器=512时 
        valid_r<=1'b0;                   //像素输入冻结
 end

 wire valid = valid_r;               //连线
 assign x_dis=X;       //连线X
 assign y_dis=Y;       //连线Y
 // reg[7:0] char_bit;
 // always@(posedge CLK_to_DAC)
 //     if(X==10'd144)char_bit<=9'd240;   //当显示到144像素时准备开始输出图像数据
 //     else if(X>10'd144&&X<10'd384)     //左边距屏幕144像素到416像素时    416=144+272(图像宽度)
 //         char_bit<=char_bit-1'b1;       //倒着输出图像信息
         
 reg[29:0] vga_rgb;                //定义颜色缓存
 always@(posedge CLK_to_DAC) begin
     if(X>=0&&X<200)begin    //X控制图像的横向显示边界:左边距屏幕左边144像素  右边界距屏幕左边界416像素
         vga_rgb<=30'hffffffffff;   //白色
     end
     else if(X>=200&&X<400)begin
         vga_rgb<=30'hf00ff65f1f;   
     end
     else if(X>=400&&X<600)begin
         vga_rgb<=30'h9563486251; 
     end
     else begin
         vga_rgb<=30'h5864928654; 
     end
 end
 assign VGA_R=vga_rgb[23:16];
 assign VGA_G=vga_rgb[15:8];
 assign VGA_B=vga_rgb[7:0];
endmodule


【FPGA实验】基于DE2-115平台的VGA显示
另一种写法(该部分使用了EP4CE6F17C8):
使用不同的分辨率可以定义一个文件保存

`define vga_640_480
`define vga_1920_1080
`define vga_1024_768

`ifdef  vga_640_480
    //执行操作A
    `define H_Right_Border 8
    `define H_Front_Porch  8
    `define H_Sync_Time    96
    `define H_Back_Porch   40
    `define H_Left_Border  8
    `define H_Data_Time    640
    `define H_Total_Time   800

    `define V_Bottom_Border 8
    `define V_Front_Porch   2
    `define V_Sync_Time     2
    `define V_Back_Porch    25
    `define V_Top_Border    8
    `define V_Data_Time     480
    `define V_Total_Time    525

`elsif  vga_1920_1080
    //执行操作B
    `define H_Right_Border 0
    `define H_Front_Porch  88
    `define H_Sync_Time    44
    `define H_Back_Porch   148
    `define H_Left_Border  0
    `define H_Data_Time    1920
    `define H_Total_Time   2200

    `define V_Bottom_Border 0
    `define V_Front_Porch   4
    `define V_Sync_Time     5
    `define V_Back_Porch    36
    `define V_Top_Border    0
    `define V_Data_Time     1080
    `define V_Total_Time    1125

`elsif vga_1024_768 
    `define H_Right_Border 0
    `define H_Front_Porch  24
    `define H_Sync_Time    136
    `define H_Back_Porch   160
    `define H_Left_Border  0
    `define H_Data_Time    1024
    `define H_Total_Time   1344

    `define V_Bottom_Border 0 
    `define V_Front_Porch   3 
    `define V_Sync_Time     6 
    `define V_Back_Porch    29
    `define V_Top_Border    0 
    `define V_Data_Time     768 
    `define V_Total_Time    806

`else

`endif

VAG驱动

`define vga_640_480

`include "vga_para.v"

module vga_ctrl(
    input                 clk         ,//时钟信号 //25.2MHZ
    input                 rst_n       ,//复位信号
    input         [23:0]  data_disp   ,

    output  reg   [10:0]  h_addr      ,//数据有效显示区域行地址
    output  reg   [10:0]  v_addr      ,//数据有效显示区域场地址

    output  reg           vsync       ,
    output  reg           hsync       ,

    output  reg   [7 :0]  vga_r       ,
    output  reg   [7 :0]  vga_b       ,
    output  reg   [7 :0]  vga_g       ,
    output  wire          vga_blk     ,
    output  wire          vga_sync    ,
    output  reg           vga_clk      //25.2MHZ
);

//参数定义
    parameter   H_SYNC_START = 1,
                H_SYNC_STOP  = `H_Sync_Time ,
                H_DATA_START = `H_Sync_Time + `H_Back_Porch + `H_Left_Border,
                H_DATA_STOP  = `H_Sync_Time + `H_Back_Porch + `H_Left_Border + `H_Data_Time,

                V_SYNC_START = 1,
                V_SYNC_STOP  = `V_Sync_Time,
                V_DATA_START = `V_Sync_Time + `V_Back_Porch + `V_Top_Border,
                V_DATA_STOP  = `V_Sync_Time + `V_Back_Porch + `V_Top_Border + `V_Data_Time;

//信号定义
    reg     [11:0]  cnt_h_addr  ;//行地址计数器
    wire            add_h_addr  ;
    wire            end_h_addr  ;

    reg     [11:0]  cnt_v_addr  ;//长地址计数器
    wire            add_v_addr  ;
    wire            end_v_addr  ;

    assign vga_sync = 1'b0;

    assign vga_blk = ~((cnt_h_addr<`H_Front_Porch + `H_Sync_Time + `H_Back_Porch)||(cnt_v_addr<`V_Front_Porch + `V_Sync_Time + `V_Back_Porch)); 

    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            cnt_h_addr <= 12'd0;
        end
        else if(add_h_addr)begin
            if(end_h_addr)begin
                cnt_h_addr <= 12'd0;
            end
            else begin
                cnt_h_addr <= cnt_h_addr + 12'd1;
            end
        end
        else begin
            cnt_h_addr <= 12'd0;
        end
    end

    assign add_h_addr = 1'b1;
    assign end_h_addr = add_h_addr && cnt_h_addr == `H_Total_Time - 1;

    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            cnt_v_addr <= 12'd0;
        end
        else if(add_v_addr)begin
            if(end_v_addr)begin
                cnt_v_addr <= 12'd0;
            end
            else begin
                cnt_v_addr <= cnt_v_addr + 12'd1;
            end
        end
        else begin
            cnt_v_addr <= cnt_v_addr;
        end
    end

    assign add_v_addr = end_h_addr;
    assign end_v_addr = add_v_addr && cnt_v_addr == `V_Total_Time - 1;

    //行场同步信号
    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            hsync <= 1'b1;
        end
        else if(cnt_h_addr == H_SYNC_START - 1)begin
            hsync <= 1'b0;
        end
        else if(cnt_h_addr == H_SYNC_STOP - 1)begin
            hsync <= 1'b1;
        end
        else begin
            hsync <= hsync;
        end
    end

    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            vsync <= 1'b1;
        end
        else if(cnt_v_addr == V_SYNC_START - 1)begin
            vsync <= 1'b0;
        end
        else if(cnt_v_addr == V_SYNC_STOP - 1)begin
            vsync <= 1'b1;
        end
        else begin
            vsync <= vsync;
        end
    end

    always@(posedge clk or negedge rst_n)begin
        if(!rst_n)begin
            vga_clk =0;
        end
        else begin
            vga_clk = ~vga_clk;
        end
    end 

    //数据有效显示区域定义
    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            h_addr <= 11'd0;
        end
        else if((cnt_h_addr >= H_DATA_START - 1) &&( cnt_h_addr <= H_DATA_STOP - 1))begin
            h_addr <= cnt_h_addr - H_DATA_START - 1;
        end
        else begin
            h_addr <= 11'd0;
        end
    end

    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            v_addr <= 11'd0;
        end
        else if((cnt_v_addr >= V_DATA_START - 1) && (cnt_v_addr <= V_DATA_STOP - 1))begin
            v_addr <= cnt_v_addr - V_DATA_START -1;
        end
        else begin
            v_addr <= 11'd0;
        end
    end

    //显示数据
    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            vga_r <= 8'b0;
            vga_g <= 8'b0;
            vga_b <= 8'b0;
        end
        else if((cnt_h_addr >= H_DATA_START - 1) &&( cnt_h_addr <= H_DATA_STOP - 1) 
                && (cnt_v_addr >= V_DATA_START - 1) && (cnt_v_addr <= V_DATA_STOP - 1))begin
            vga_r <= data_disp[23:16];
            vga_g <= data_disp[15: 8];
            vga_b <= data_disp[7 : 0];
        end
        else begin
            vga_r <= 8'b0;
            vga_g <= 8'b0;
            vga_b <= 8'b0;
        end
    end

endmodule

生成数据

module data_gen(
    input                   clk     ,//时钟信号
    input                   rst_n   ,//复位信号

    input       [10:0]      h_addr  ,//数据有效显示区域地址
    input       [10:0]      v_addr  ,//数据有效显示区域地址
    
    output  reg [23:0]      data_disp        
);
//参数定义
    parameter   BLACK       = 24'h000000,
                RED         = 24'hFF0000,
                GREEN       = 24'h00FF00,
                BLUE        = 24'h0000FF,
                YELLOW      = 24'hFFFF00,
                SKY_BULE    = 24'h00FFFF,
                PURPLE      = 24'hFF00FF,
                GREY        = 24'hC0C0C0,
                WIGHT       = 24'hFFFFFF;

    always@(posedge clk or negedge rst_n)begin
        if(!rst_n)begin
            data_disp <= BLACK;
        end
        else begin
            case(h_addr)
                0  : data_disp <= RED;
                80 : data_disp <= GREEN;
                160: data_disp <= BLUE;
                240: data_disp <= YELLOW;
                320: data_disp <= SKY_BULE;
                400: data_disp <= PURPLE;
                480: data_disp <= GREY;
                560: data_disp <= WIGHT;
                default:data_disp <= data_disp;
            endcase
        end
    end


endmodule

顶层文件

module vga_top(
    input                  clk         ,//时钟信号
    input                  rst_n       ,//复位信号
  
    output  wire           vsync       ,
    output  wire           hsync       ,
    output  wire   [7 :0]  vga_r       ,
    output  wire   [7 :0]  vga_b       ,
    output  wire   [7 :0]  vga_g       ,
    output                 vga_blk     ,
    output  wire           vga_sync    ,
    output                 vga_clk                  
);
    wire     [23:0]      data_disp   ;

    wire     [10:0]      h_addr      ;
    wire     [10:0]      v_addr      ;


data_gen u_data_gen(
    .clk        (vga_clk    ),//时钟信号
    .rst_n      (rst_n      ),//复位信号
    
    .h_addr     (h_addr     ),//数据有效显示区域地址
    .v_addr     (v_addr     ),//数据有效显示区域地址
        
    .data_disp  (data_disp  )        
);

vga_ctrl u_vga_ctrl(
    .clk         (clk       ),//时钟信号 25.2MHZ
    .rst_n       (rst_n     ),//复位信号
    .data_disp   (data_disp ),

    .h_addr      (h_addr    ),//数据有效显示区域行地址
    .v_addr      (v_addr    ),//数据有效显示区域场地址

    .vsync       (vsync     ),
    .hsync       (hsync     ),

    .vga_r       (vga_r     ),
    .vga_b       (vga_b     ),
    .vga_g       (vga_g     ),
    .vga_blk     (vga_blk   ),
    .vga_sync    (vga_sync  ),
    .vga_clk     (vga_clk   )
);

endmodule

显示效果:
【FPGA实验】基于DE2-115平台的VGA显示

四.VGA显示彩色图片

该部分使用了EP4CE6F17C8
在前面的学习中了解到图像的格式有多种,例如JPEG,BMP,PNG,JPG等,图像的位数也有单色、16色、256色、4096色、16位真彩色、24位真彩色、32位真彩色在这里插入图片描述
这几种。
VGA的驱动程序显示的格式为RGB565,我们先找到一张需要显示的彩色图片,经过处理,将该图片转化为ROM可以存储的格式,然后VGA驱动程序从ROM中读取数据,输出到VGA显示屏显示。尽量选一张小的图片,因为ROM存储空间有限。
使用BMP2Mif软件将bmp格式图片转换为hex文件
【FPGA实验】基于DE2-115平台的VGA显示

hex文件内容如下:
【FPGA实验】基于DE2-115平台的VGA显示

新建Quartus工程,产生ROM IP核,将生成的mif文件保存在ROM中
双击选择ROM:1-PORT
【FPGA实验】基于DE2-115平台的VGA显示
【FPGA实验】基于DE2-115平台的VGA显示
取消勾选q
【FPGA实验】基于DE2-115平台的VGA显示
加载HEX文件
【FPGA实验】基于DE2-115平台的VGA显示
【FPGA实验】基于DE2-115平台的VGA显示

同时还需要用到PLL的IP核调用,可以参考https://blog.csdn.net/qq_45659777/article/details/124955399
生成一个25MHZ的时钟。

从ROM取出图片数据

module data_drive (
    input			wire						vga_clk,
    input			wire						rst_n,
    input			wire		[ 11:0 ]		addr_h,
    input			wire		[ 11:0 ]		addr_v,
    output			reg		    [ 15:0 ]		rgb_data
);

localparam	black  = 16'd0;

parameter	height = 48; // 图片高度
parameter	width  = 48; // 图片宽度

reg			[ 13:0 ]		rom_address				; // ROM地址
wire		[ 15:0 ]		rom_data				; // 图片数据

wire						flag_enable_out2			; // 图片有效区域
wire						flag_clear_rom_address		; // 地址清零
wire						flag_begin_h			    ; // 图片显示行
wire						flag_begin_v			    ; // 图片显示列


always @( posedge vga_clk or negedge rst_n) begin
    if(!rst_n)begin
        rgb_data = black;
    end
    else if ( flag_enable_out2 ) begin
        rgb_data = rom_data;
    end
    else begin
        rgb_data = black;
    end
end

//ROM地址计数器
always @( posedge vga_clk or negedge rst_n ) begin
    if ( !rst_n ) begin
        rom_address <= 0;
    end
    else if ( flag_clear_rom_address ) begin //计数满清零
        rom_address <= 0;
    end
        else if ( flag_enable_out2 ) begin  //在有效区域内+1
        rom_address <= rom_address + 1;
        end
    else begin  //无效区域保持
        rom_address <= rom_address;
    end
end
assign flag_clear_rom_address = rom_address == height * width - 1;
assign flag_begin_h     = addr_h > ( ( 640 - width ) / 2 ) && addr_h < ( ( 640 - width ) / 2 ) + width + 1;
assign flag_begin_v     = addr_v > ( ( 480 - height )/2 ) && addr_v <( ( 480 - height )/2 ) + height + 1;
assign flag_enable_out2 = flag_begin_h && flag_begin_v;

//实例化ROM
rom	rom_inst (
.address    ( rom_address   ),
.clock      ( vga_clk       ),
.q          ( rom_data      )
);
endmodule


vga驱动程序

module vga_display_pic (
    input			wire					clk,      //系统时钟
    input			wire					rst_n,    //复位
    input			wire	[ 15:0 ]		rgb_data, //16位RGB对应值
    output			wire					vga_clk,  //vga时钟 25M
    output			reg						h_sync,   //行同步信号
    output			reg						v_sync,   //场同步信号
    output			reg		[ 11:0 ]		addr_h,   //行地址
    output			reg		[ 11:0 ]		addr_v,   //列地址
    output			wire	[ 4:0 ]		    rgb_r,    //红基色
    output			wire	[ 5:0 ]			rgb_g,    //绿基色
    output			wire	[ 4:0 ]			rgb_b     //蓝基色
);

// 640 * 480 60HZ
localparam	 H_FRONT = 16; // 行同步前沿信号周期长
localparam	 H_SYNC  = 96; // 行同步信号周期长
localparam	 H_BLACK = 48; // 行同步后沿信号周期长
localparam	 H_ACT   = 640; // 行显示周期长
localparam	 V_FRONT = 11; // 场同步前沿信号周期长
localparam	 V_SYNC  = 2; // 场同步信号周期长
localparam	 V_BLACK = 31; // 场同步后沿信号周期长
localparam	 V_ACT   = 480; // 场显示周期长

localparam	H_TOTAL = H_FRONT + H_SYNC + H_BLACK + H_ACT; // 行周期
localparam	V_TOTAL = V_FRONT + V_SYNC + V_BLACK + V_ACT; // 列周期

reg			[ 11:0 ]			cnt_h			; // 行计数器
reg			[ 11:0 ]			cnt_v			; // 场计数器
reg			[ 15:0 ]			rgb			; // 对应显示颜色值

// 对应计数器开始、结束、计数信号
wire							flag_enable_cnt_h			;
wire							flag_clear_cnt_h			;
wire							flag_enable_cnt_v			;
wire							flag_clear_cnt_v			;
wire							flag_add_cnt_v  			;
wire							valid_area      			;


// 25M时钟
wire							clk_25			;
// 50M时钟
wire							clk_50			;
wire                            locked          ;
//PLL
pll	pll_inst (
	.areset     ( ~rst_n    ),
	.inclk0     ( clk       ),
	.c0         ( clk_50    ), //50M
	.c1         ( clk_25    ), //25M
    .locked     (locked     )
	);
//根据不同分配率选择不同频率时钟
assign vga_clk = clk_25;


// 行计数
always @( posedge vga_clk or negedge rst_n ) begin
    if ( !rst_n ) begin
        cnt_h <= 0;
    end
    else if ( flag_enable_cnt_h ) begin
        if ( flag_clear_cnt_h ) begin
            cnt_h <= 0;
        end
        else begin
            cnt_h <= cnt_h + 1;
        end
    end
    else begin
        cnt_h <= 0;
    end
end
assign flag_enable_cnt_h = 1;
assign flag_clear_cnt_h  = cnt_h == H_TOTAL - 1;

// 行同步信号
always @( posedge vga_clk or negedge rst_n ) begin
    if ( !rst_n ) begin
        h_sync <= 0;
    end
    else if ( cnt_h == H_SYNC - 1 ) begin // 同步周期时为1
        h_sync <= 1;
    end
        else if ( flag_clear_cnt_h ) begin // 其余为0
        h_sync <= 0;
        end
    else begin
        h_sync <= h_sync;
    end
end

// 场计数
always @( posedge vga_clk or negedge rst_n ) begin
    if ( !rst_n ) begin
        cnt_v <= 0;
    end
    else if ( flag_enable_cnt_v ) begin
        if ( flag_clear_cnt_v ) begin
            cnt_v <= 0;
        end
        else if ( flag_add_cnt_v ) begin
            cnt_v <= cnt_v + 1;
        end
        else begin
            cnt_v <= cnt_v;
        end
    end
    else begin
        cnt_v <= 0;
    end
end
assign flag_enable_cnt_v = flag_enable_cnt_h;
assign flag_clear_cnt_v  = cnt_v == V_TOTAL - 1;
assign flag_add_cnt_v    = flag_clear_cnt_h;

// 场同步信号
always @( posedge vga_clk or negedge rst_n ) begin
    if ( !rst_n ) begin
        v_sync <= 0;
    end
    else if ( cnt_v == V_SYNC - 1 ) begin
        v_sync <= 1;
    end
        else if ( flag_clear_cnt_v ) begin
        v_sync <= 0;
        end
    else begin
        v_sync <= v_sync;
    end
end

// 对应有效区域行地址 1-640
always @( posedge vga_clk or negedge rst_n ) begin
    if ( !rst_n ) begin
        addr_h <= 0;
    end
    else if ( valid_area ) begin
        addr_h <= cnt_h - H_SYNC - H_BLACK + 1;
    end
    else begin
        addr_h <= 0;
    end
end
// 对应有效区域列地址 1-480
always @( posedge vga_clk or negedge rst_n ) begin
    if ( !rst_n ) begin
        addr_v <= 0;
    end
    else if ( valid_area ) begin
        addr_v <= cnt_v -V_SYNC - V_BLACK + 1;
    end
    else begin
        addr_v <= 0;
    end
end
// 有效显示区域
assign valid_area = cnt_h >= H_SYNC + H_BLACK && cnt_h <= H_SYNC + H_BLACK + H_ACT && cnt_v >= V_SYNC + V_BLACK && cnt_v <= V_SYNC + V_BLACK + V_ACT;


// 显示颜色
always @( posedge vga_clk or negedge rst_n ) begin
    if ( !rst_n ) begin
        rgb <= 16'h0;
    end
    else if ( valid_area ) begin
        rgb <= rgb_data;
    end
    else begin
        rgb <= 16'b0;
    end
end
assign rgb_r = rgb[ 15:11 ];
assign rgb_g = rgb[ 10:5 ];
assign rgb_b = rgb[ 4:0 ];

endmodule


顶层模块

module vga_top (
    input			wire						clk,
    input			wire						rst_n,
    output			wire						vga_clk,
    output			wire						h_sync,
    output			wire						v_sync,
    output			wire		[ 4:0 ]			rgb_r,
    output			wire		[ 5:0 ]			rgb_g,
    output			wire		[ 4:0 ]			rgb_b
);

wire		[ 11:0 ]		    addr_h              ;
wire		[ 11:0 ]		    addr_v              ;
wire		[ 15:0 ]			rgb_data			;

//模块例化
vga_display_pic (
    .clk        (clk        ),
    .rst_n      (rst_n      ),
    .rgb_data   (rgb_data   ),
    .vga_clk    (vga_clk    ),
    .h_sync     (h_sync     ),
    .v_sync     (v_sync     ),
    .addr_h     (addr_h     ),
    .addr_v     (addr_v     ),
    .rgb_r      (rgb_r      ),
    .rgb_g      (rgb_g      ),
    .rgb_b      (rgb_b      ) 
);

//数据模块
data_drive u_data_drive(
.vga_clk        ( vga_clk   ),
.rst_n          ( rst_n     ),
.addr_h         ( addr_h    ),
.addr_v         ( addr_v    ),
.rgb_data       ( rgb_data  )
);

endmodule


显示效果:
【FPGA实验】基于DE2-115平台的VGA显示
另一种写法:

`define vga_640_480

`include "vga_para.v"

module vga_ctrl(
    input                 clk         ,//时钟信号 //25.2MHZ
    input                 rst_n       ,//复位信号
    output  reg           vsync       ,
    output  reg           hsync       ,

    output  reg   [4 :0]  vga_r       ,
    output  reg   [4 :0]  vga_b       ,
    output  reg   [5 :0]  vga_g       
);

//参数定义
    parameter   H_SYNC_START = 1,
                H_SYNC_STOP  = `H_Sync_Time ,
                H_DATA_START = `H_Sync_Time + `H_Back_Porch + `H_Left_Border,
                H_DATA_STOP  = `H_Sync_Time + `H_Back_Porch + `H_Left_Border + `H_Data_Time,

                V_SYNC_START = 1,
                V_SYNC_STOP  = `V_Sync_Time,
                V_DATA_START = `V_Sync_Time + `V_Back_Porch + `V_Top_Border,
                V_DATA_STOP  = `V_Sync_Time + `V_Back_Porch + `V_Top_Border + `V_Data_Time;

//信号定义
    reg     [11:0]  cnt_h_addr  ;//行地址计数器
    wire            add_h_addr  ;
    wire            end_h_addr  ;

    reg     [11:0]  cnt_v_addr  ;//长地址计数器
    wire            add_v_addr  ;
    wire            end_v_addr  ;

    reg     [13:0]  address     ;
    wire    [15:0]  q           ;
    reg             vga_clk     ;
    wire    [15:0]  data_disp   ;
    
    reg     [10:0]  h_addr      ;//数据有效显示区域行地址
    reg     [10:0]  v_addr      ;//数据有效显示区域场地址

    wire    flag_begin_h        ;
    wire    flag_begin_v        ;
    wire    flag_clear_address  ;
    wire    flag_enable_out2    ;

    assign vga_sync = 1'b0;

pll	pll_inst (
	.areset ( !rst_n ),
	.inclk0 ( clk    ),
	.c0     ( c0     ),//50MHZ
	.c1     ( c1     ) //25MHZ
	);

    always@(posedge clk or negedge rst_n)begin
        if(!rst_n)begin
            vga_clk <= clk;
        end
        else begin
            vga_clk <= c1;
        end
    end


    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            cnt_h_addr <= 12'd0;
        end
        else if(add_h_addr)begin
            if(end_h_addr)begin
                cnt_h_addr <= 12'd0;
            end
            else begin
                cnt_h_addr <= cnt_h_addr + 12'd1;
            end
        end
        else begin
            cnt_h_addr <= 12'd0;
        end
    end

    assign add_h_addr = 1'b1;
    assign end_h_addr = add_h_addr && cnt_h_addr == `H_Total_Time - 1;

    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            cnt_v_addr <= 12'd0;
        end
        else if(add_v_addr)begin
            if(end_v_addr)begin
                cnt_v_addr <= 12'd0;
            end
            else begin
                cnt_v_addr <= cnt_v_addr + 12'd1;
            end
        end
        else begin
            cnt_v_addr <= cnt_v_addr;
        end
    end

    assign add_v_addr = end_h_addr;
    assign end_v_addr = add_v_addr && cnt_v_addr == `V_Total_Time - 1;

    //行场同步信号
    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            hsync <= 1'b1;
        end
        else if(cnt_h_addr == H_SYNC_START - 1)begin
            hsync <= 1'b0;
        end
        else if(cnt_h_addr == H_SYNC_STOP - 1)begin
            hsync <= 1'b1;
        end
        else begin
            hsync <= hsync;
        end
    end

    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            vsync <= 1'b1;
        end
        else if(cnt_v_addr == V_SYNC_START - 1)begin
            vsync <= 1'b0;
        end
        else if(cnt_v_addr == V_SYNC_STOP - 1)begin
            vsync <= 1'b1;
        end
        else begin
            vsync <= vsync;
        end
    end

    //数据有效显示区域定义
    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            h_addr <= 11'd0;
        end
        else if((cnt_h_addr >= H_DATA_START - 1) &&( cnt_h_addr <= H_DATA_STOP - 1))begin
            h_addr <= cnt_h_addr - H_DATA_START - 1;
        end
         else if(address == 48*48 - 1) begin
            h_addr <= 11'd0;
        end
    end

    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            v_addr <= 11'd0;
        end
        else if((cnt_v_addr >= V_DATA_START - 1) && (cnt_v_addr <= V_DATA_STOP - 1))begin
            v_addr <= cnt_v_addr - V_DATA_START -1;
        end
        else if(address == 48*48 - 1) begin
            v_addr <= 11'd0;
        end
    end

    //显示数据
    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            vga_r <= 5'b0;
            vga_g <= 6'b0;
            vga_b <= 5'b0;
        end
        else if((cnt_h_addr >= H_DATA_START - 1) &&( cnt_h_addr <= H_DATA_STOP - 1) 
                && (cnt_v_addr >= V_DATA_START - 1) && (cnt_v_addr <= V_DATA_STOP - 1))begin
            vga_r <= data_disp[15:11];
            vga_g <= data_disp[10: 5];
            vga_b <= data_disp[4 : 0];
        end
        else begin
            vga_r <= 5'b0;
            vga_g <= 6'b0;
            vga_b <= 5'b0;
        end
    end

    assign data_disp = q;

//ROM地址计数器
always @( posedge vga_clk or negedge rst_n ) begin
    if ( !rst_n ) begin
        address <= 0;
    end
    else if ( flag_clear_address ) begin //计数满清零
        address <= 0;
    end
        else if ( flag_enable_out2 ) begin  //在有效区域内+1
        address <= address + 1;
        end
    else begin  //无效区域保持
        address <= address;
    end
end
assign flag_clear_address = address == 48 * 48 - 1;
assign flag_begin_h     = h_addr > ( ( 640 - 48 ) / 2 ) && h_addr < ( ( 640 - 48 ) / 2 ) + 48 + 1;
assign flag_begin_v     = v_addr > ( ( 480 - 48 )/2 ) && v_addr <( ( 480 - 48 )/2 ) + 48 + 1;
assign flag_enable_out2 = flag_begin_h && flag_begin_v;

rom	rom_inst (
	.address    ( address),
	.clock      ( vga_clk),
	.q          ( q      )
	);

endmodule

显示效果:
【FPGA实验】基于DE2-115平台的VGA显示
24位深度图片显示(该部分使用CE115F29C7
这里不使用HEX文件,而是利用上述工具软件生成mif文件,其余同上。
【FPGA实验】基于DE2-115平台的VGA显示

`define vga_640_480

`include "vga_para.v"

module vga_ctrl(
    input                 clk         ,//时钟信号 //25.2MHZ
    input                 rst_n       ,//复位信号
    output  reg           vsync       ,
    output  reg           hsync       ,
    output  reg           vga_clk     ,
    output  wire          vga_sync    ,
    output  wire          vga_blank   ,

    output  reg   [7 :0]  vga_r       ,
    output  reg   [7 :0]  vga_b       ,
    output  reg   [7 :0]  vga_g       
);

//参数定义
    parameter   H_SYNC_START = 1,
                H_SYNC_STOP  = `H_Sync_Time ,
                H_DATA_START = `H_Sync_Time + `H_Back_Porch + `H_Left_Border,
                H_DATA_STOP  = `H_Sync_Time + `H_Back_Porch + `H_Left_Border + `H_Data_Time,

                V_SYNC_START = 1,
                V_SYNC_STOP  = `V_Sync_Time,
                V_DATA_START = `V_Sync_Time + `V_Back_Porch + `V_Top_Border,
                V_DATA_STOP  = `V_Sync_Time + `V_Back_Porch + `V_Top_Border + `V_Data_Time;

//信号定义
    reg     [11:0]  cnt_h_addr  ;//行地址计数器
    wire            add_h_addr  ;
    wire            end_h_addr  ;

    reg     [11:0]  cnt_v_addr  ;//长地址计数器
    wire            add_v_addr  ;
    wire            end_v_addr  ;

    reg     [11:0]  address     ;
    wire    [23:0]  q           ;
    wire    [23:0]  data_disp   ;
    
    reg     [10:0]  h_addr      ;//数据有效显示区域行地址
    reg     [10:0]  v_addr      ;//数据有效显示区域场地址

    wire    flag_begin_h        ;
    wire    flag_begin_v        ;
    wire    flag_clear_address  ;
    wire    flag_enable_out2    ;

    assign vga_sync = 1'b0;
    assign vga_blank = ~((cnt_h_addr<H_DATA_START-1)||(cnt_v_addr<V_DATA_START-1));  //当行计数器小于行空白总长或场计数器小于场空白总长时,空白信号低电平

pll	pll_inst (
	.areset ( !rst_n ),
	.inclk0 ( clk    ),
	.c0     ( c0     ),//50MHZ
	.c1     ( c1     ) //25MHZ
	);

    always@(posedge clk or negedge rst_n)begin
        if(!rst_n)begin
            vga_clk <= clk;
        end
        else begin
            vga_clk <= c1;
        end
    end


    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            cnt_h_addr <= 12'd0;
        end
        else if(add_h_addr)begin
            if(end_h_addr)begin
                cnt_h_addr <= 12'd0;
            end
            else begin
                cnt_h_addr <= cnt_h_addr + 12'd1;
            end
        end
        else begin
            cnt_h_addr <= 12'd0;
        end
    end

    assign add_h_addr = 1'b1;
    assign end_h_addr = add_h_addr && cnt_h_addr == `H_Total_Time - 1;

    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            cnt_v_addr <= 12'd0;
        end
        else if(add_v_addr)begin
            if(end_v_addr)begin
                cnt_v_addr <= 12'd0;
            end
            else begin
                cnt_v_addr <= cnt_v_addr + 12'd1;
            end
        end
        else begin
            cnt_v_addr <= cnt_v_addr;
        end
    end

    assign add_v_addr = end_h_addr;
    assign end_v_addr = add_v_addr && cnt_v_addr == `V_Total_Time - 1;

    //行场同步信号
    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            hsync <= 1'b1;
        end
        else if(cnt_h_addr == H_SYNC_START - 1)begin
            hsync <= 1'b0;
        end
        else if(cnt_h_addr == H_SYNC_STOP - 1)begin
            hsync <= 1'b1;
        end
        else begin
            hsync <= hsync;
        end
    end

    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            vsync <= 1'b1;
        end
        else if(cnt_v_addr == V_SYNC_START - 1)begin
            vsync <= 1'b0;
        end
        else if(cnt_v_addr == V_SYNC_STOP - 1)begin
            vsync <= 1'b1;
        end
        else begin
            vsync <= vsync;
        end
    end

    //数据有效显示区域定义
    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            h_addr <= 11'd0;
        end
        else if((cnt_h_addr >= H_DATA_START - 1) &&( cnt_h_addr <= H_DATA_STOP - 1))begin
            h_addr <= cnt_h_addr - H_DATA_START - 1;
        end
         else if(address == 48*48 - 1) begin
            h_addr <= 11'd0;
        end
    end

    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            v_addr <= 11'd0;
        end
        else if((cnt_v_addr >= V_DATA_START - 1) && (cnt_v_addr <= V_DATA_STOP - 1))begin
            v_addr <= cnt_v_addr - V_DATA_START -1;
        end
        else if(address == 48*48 - 1) begin
            v_addr <= 11'd0;
        end
    end

    //显示数据
    always@(posedge vga_clk or negedge rst_n)begin
        if(!rst_n)begin
            vga_r <= 8'b0;
            vga_g <= 8'b0;
            vga_b <= 8'b0;
        end
        else if((cnt_h_addr >= H_DATA_START - 1) &&( cnt_h_addr <= H_DATA_STOP - 1) 
                && (cnt_v_addr >= V_DATA_START - 1) && (cnt_v_addr <= V_DATA_STOP - 1))begin
            vga_r <= data_disp[23:16];
            vga_g <= data_disp[15: 8];
            vga_b <= data_disp[7 : 0];
        end
        else begin
            vga_r <= 8'b0;
            vga_g <= 8'b0;
            vga_b <= 8'b0;
        end
    end

    assign data_disp = q;

//ROM地址计数器
always @( posedge vga_clk or negedge rst_n ) begin
    if ( !rst_n ) begin
        address <= 0;
    end
    else if ( flag_clear_address ) begin //计数满清零
        address <= 0;
    end
        else if ( flag_enable_out2 ) begin  //在有效区域内+1
        address <= address + 1;
        end
    else begin  //无效区域保持
        address <= address;
    end
end
assign flag_clear_address = address == 48 * 48 - 1;
assign flag_begin_h     = h_addr > ( ( 640 - 48 ) / 2 ) && h_addr < ( ( 640 - 48 ) / 2 ) + 48 + 1;
assign flag_begin_v     = v_addr > ( ( 480 - 48 )/2 ) && v_addr <( ( 480 - 48 )/2 ) + 48 + 1;
assign flag_enable_out2 = flag_begin_h && flag_begin_v;

rom	rom_inst (
	.address    ( address),
	.clock      ( vga_clk),
	.q          ( q      )
	);

endmodule

显示效果:
【FPGA实验】基于DE2-115平台的VGA显示

五.总结

使用VGA显示,先弄清楚VAG显示原理,将显示屏看为N*M大小的一个坐标系,为每个坐标分配一个RGB三通道的值,也就是每个像素,行场信号扫描的速度很快,就能连成一副完整的图像。图片显示需要用到ROM来存储图片数据,在显示时,从ROM中取出数据赋给相应的RBG通道就能显示了。

六.参考链接:

https://blog.csdn.net/qq_43279579/article/details/117441000
https://blog.csdn.net/qq_40147893/article/details/108342484
https://www.likecs.com/show-203744852.html
https://blog.csdn.net/qq_47281915/article/details/125134764文章来源地址https://www.toymoban.com/news/detail-435875.html

到了这里,关于【FPGA实验】基于DE2-115平台的VGA显示的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • FPGA-DE2-115-实验一-亮度可调流水灯

    前言: 本文主要介绍了集成电路EDA这门课程的相关实验及代码。使用的软件是Quartus Ⅱ,该实验使用fpga芯片为cyclone IV EP4CE115F29C7。 (1)熟悉流水灯的工作原理; (2)了解设计中的优化方案; (3)进一步掌握PWM信号的设计; 利用FPGA板及4个LED发光二极管,设计一个亮度可调

    2024年02月04日
    浏览(50)
  • FPGA-DE2-115-实验二-模块化多功能数字钟

    前言: 本文主要介绍了集成电路EDA这门课程的相关实验及代码。使用的软件是Quartus Ⅱ,该实验使用fpga芯片为cyclone IV EP4CE115F29C7。 本次实验我们需要实现生活中常见的电子手表的所有功能。 我们知道: 电子手表有五个功能,包括:时间显示功能,夜光模式功能,计时功能,闹钟功能

    2024年02月04日
    浏览(74)
  • 多功能交通灯控制系统VHDL十字路口红绿灯倒计时DE2-115开发板代码

    名称:多功能交通灯控制系统VHDL十字路口红绿灯倒计时DE2-115开发板 软件:Quartus II 语言:VHDL 代码功能: 要求设计一个多功能交通灯控制系统。并进行软件仿真与硬件实现。要求做到  (1)主干道绿灯亮时,支干道红灯亮,反之亦然,两者交替允许通行,主干道每次放行60s,支干道每

    2024年02月04日
    浏览(69)
  • 基于Quartus Prime平台FPGA关于VGA显示的模块化设计:VGA八种单色屏1s切换显示、横条纹、竖条纹、棋盘格显示、显示模式按键可调、数码管显示单色屏序号

    VGA(Video Graphics Array)是一种显示接口标准,它最初由IBM于1987年推出。VGA协议定义了计算机视频输出信号的格式和特性。它主要用于连接计算机和显示器之间的传输,实现图像和视频的显示。 VGA协议支持最高分辨率为640x480像素,色彩深度为16位色(即65,536种颜色)。它使用模

    2024年02月03日
    浏览(51)
  • 基于FPGA的VGA图像显示

    引言:本文我们介绍利用FPGA实现VGA图像显示,主要介绍VGA硬件接口、VGA接口时序原理以及FPGA代码实现VGA接口时序、仿真等内容。 VGA(Video Graphics Array)视频图形阵列是IBM于1987年提出的一个使用模拟信号的电脑显示标准。VGA接口即电脑采用VGA标准输出数据的专用接口。VGA接口

    2024年02月06日
    浏览(33)
  • FPGA——基于VGA协议显示彩条、图片、字符

    本篇博客主要是深入了解VGA协议,理解不同显示模式下的VGA控制时序参数(行频、场频、水平/垂直同步时钟周期、显示后沿/前沿等概念和计算方式)。并通过Verilog编程,实现以下VGA显示:1、屏幕上显示彩色条纹;2、显示自定义的汉字字符;3、输出一幅彩色图像。 VGA(Vi

    2024年02月04日
    浏览(53)
  • FPGA--OV7725摄像头采集与VGA显示实验--1--OV7725使用与驱动协议

    目录        前言 OV7725引脚及功能框图 参数指标 引脚 功能框图 SCCB时序及读写操作  SCCB时序特点 读写实现 OV7725寄存器常用配置参数              摄像头采集是图像处理的第一步,本章节分为多部分,旨在让大家学会如何使用OV7725采集图像,并且使用VGA协议显示出来。

    2023年04月08日
    浏览(57)
  • FPGA_工程_基于Rom的VGA图像显示

    一 工程框图 框图中,CLK_in,Vga_ctrl,Vga_pic模块已有,只需要对顶层模块进行修改,并将rom ip例化添加到Vga_pic模块的.v文件中,对Vga_pic的.v文件进行一定修改。 二 理论补充 显示图像的方法:                           使用matlab将图像格式转化为,.mif数据文件,再使用.m

    2024年02月20日
    浏览(37)
  • 基于FPGA:运动目标检测(VGA显示,原理图+源码+硬件选择)

        话不多说,先上视频看效果。 基于FPGA:运动目标检测 开发板Altera:EP4CE10F17C8 摄像头:OV5640 缓存数据:SDRAM 板子是自己制作的     根据帧差法的实现流程,设计的双端口SDRAM控制器,一侧读写端口用做帧缓存,另一个端口用来缓存视频流,如图所示。     在使用

    2024年02月04日
    浏览(39)
  • 记一次基于FPGA的VGA显示四操作数计算器工程的开发流程——(1)从顶层设计说起

    首先值得说明的是,在这个项目几乎完成之际,笔者才愈发体会到了硬件思维和软件思维的云泥之别。不幸的是,在此项目的实现过程中,绝大部分代码的思维仍然是软件思维,因此该项目主要模块的设计部分可能并不能体现硬件操作的独到之处,不符合硬件工程师的基本设

    2024年02月04日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包