算法记录 | Day53 动态规划

这篇具有很好参考价值的文章主要介绍了算法记录 | Day53 动态规划。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1143.最长公共子序列

思路:

本题和动态规划:718. 最长重复子数组 (opens new window)区别在于这里不要求是连续的了,但要有相对顺序,即:“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。

1.确定dp数组(dp table)以及下标的含义

dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

2.确定递推公式

  • text1[i - 1] 与 text2[j - 1]相同,dp[i][j] = dp[i - 1][j - 1] + 1
  • text1[i - 1] 与 text2[j - 1]不相同,
  • text1[0, i - 2]与text2[0, j - ]的最长公共子序列
  • text1[0, i - 1]与text2[0, j - 2]的最长公共子序列
  • 取最大的,即dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])

3.dp数组如何初始化

test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;

同理dp[0][j]也是0

4.确定遍历顺序

从递推公式,可以看出,有三个方向可以推出dp[i][j],如图:

算法记录 | Day53 动态规划

5.举例推导dp数组

以输入:text1 = “abcde”, text2 = “ace” 为例,dp状态如图:

算法记录 | Day53 动态规划

class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        len1, len2 = len(text1)+1, len(text2)+1
        dp = [[0 for _ in range(len1)] for _ in range(len2)] # 先对dp数组做初始化操作
        for i in range(1, len2):
            for j in range(1, len1): # 开始列出状态转移方程
                if text1[j-1] == text2[i-1]:
                    dp[i][j] = dp[i-1][j-1]+1
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])
        return dp[-1][-1]

1035.不相交的线

class Solution:
    def maxUncrossedLines(self, A: List[int], B: List[int]) -> int:
        dp = [[0] * (len(B)+1) for _ in range(len(A)+1)]
        for i in range(1, len(A)+1):
            for j in range(1, len(B)+1):
                if A[i-1] == B[j-1]:
                    dp[i][j] = dp[i-1][j-1] + 1
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])
        return dp[-1][-1]

53. 最大子序和

思路:

1.确定dp数组(dp table)以及下标的含义

dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]

2.确定递推公式

dp[i]只有两个方向可以推出来:

  • dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
  • nums[i],即:从头开始计算当前连续子序列和

一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);

3.dp数组如何初始化

从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。

根据dp[i]的定义,很明显dp[0]应为nums[0]即dp[0] = nums[0]。

4.确定遍历顺序

递推公式中dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历。

5.举例推导dp数组

以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下: 算法记录 | Day53 动态规划文章来源地址https://www.toymoban.com/news/detail-435905.html

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        if len(nums) == 0:
            return 0
        dp = [0] * len(nums)
        dp[0] = nums[0]
        result = dp[0]
        for i in range(1,len(nums)):
            dp[i] = max(dp[i-1]+nums[i],nums[i])
            result = max(result, dp[i])
        return result

到了这里,关于算法记录 | Day53 动态规划的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 代码随想Day53 | 1143.最长公共子序列、1035.不相交的线、53. 最大子序和

    本题和 718. 最长重复子数组 的区别就是本题不要求连续,所以在两个字符不相等的时候,逻辑不相同,当不相同的时候,需要找到dp[i-1][j]和dp[i][j-1]之间的最大值,因为不相等的时候需要找出退而求上一个状态的两个值的最大,这样才能得到最长公共子序列数,其他的思路

    2024年02月03日
    浏览(49)
  • leetcode1143. 最长公共子序列-动态规划(java)

    leetcode1143. 最长公共子序列 来源:力扣(LeetCode) 链接:https://leetcode.cn/problems/longest-common-subsequence 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。 一个字符串的 子序列 是指这样一个新的字符串: 它是由原字

    2024年01月19日
    浏览(43)
  • 代碼隨想錄算法訓練營|第五十五天|1143.最长公共子序列、1035.不相交的线、53. 最大子序和。刷题心得(c++)

    目录 讀題 1143.最长公共子序列 自己看到题目的第一想法 看完代码随想录之后的想法 1035.不相交的线 自己看到题目的第一想法 53. 最大子序和 看完代码随想录之后的想法 1143.最长公共子序列 - 實作 思路 Code 1035.不相交的线 - 實作 思路 Code 53. 最大子序和 - 實作 思路 Code 總結

    2024年02月06日
    浏览(64)
  • LeetCode刷题 | 1143. 最长公共子序列、1035. 不相交的线、53. 最大子数组和

    给定两个字符串  text1  和  text2 ,返回这两个字符串的最长  公共子序列  的长度。如果不存在  公共子序列  ,返回  0  。 一个字符串的  子序列   是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后

    2024年02月12日
    浏览(42)
  • 【算法-动态规划】最长公共子序列

    💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学习,不断总结,共同进步,活到老学到老 导航 檀越剑指大厂系列:全面总

    2024年01月23日
    浏览(46)
  • 算法:动态规划——最长公共子序列

    动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。 与分治法不同的是,适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的。若用分治法解这类问题,则分解得到的

    2023年04月27日
    浏览(58)
  • (Java) 算法——动态规划 最长公共子序列 图解

    遇到了用动态规划来求解最长公共子序列问题,算法这块儿比较薄弱,便想着在网上找现成的思路和代码,也算拾人牙慧,但有一点没想到,都已经22年了,关于LCS问题网上给出的答案如此一言难尽……,只有零散几篇对于 新手 来说比较友好,但也仅仅这样,好在自己花了点

    2023年04月08日
    浏览(47)
  • 【动态规划】最长公共子序列——算法设计与分析

    子序列是给定序列中在任意位置去掉任意多个字符后得到的结果。例如: 给定序列 X X X : X : A B C B D A B X:ABCBDAB X : A BCB D A B X X X 的子序列: X 1 : A B C B D A B X_1:ABCBDAB X 1 ​ : A BCB D A B X 2 : A B C B X_2:ABCB X 2 ​ : A BCB X 3 : A C B B X_3:ACBB X 3 ​ : A CBB 给定两个序列

    2024年02月05日
    浏览(53)
  • 【算法(四·三):动态规划思想——最长公共子序列问题】

    最长公共子序列(Longest Common Subsequence,简称LCS)问题是一种常见的字符串处理问题。它的**目标是找到两个或多个字符串中的最长公共子序列,这个子序列不需要是连续的,但字符在原始字符串中的相对顺序必须保持一致。**例如,考虑两个字符串\\\"ABCD\\\"和\\\"ACDF\\\",它们的最长公

    2024年04月13日
    浏览(48)
  • python数据结构与算法-动态规划(最长公共子序列)

    一个序列的子序列是在该序列中删去若干元素后得 到的序列。 例如:\\\"ABCD”和“BDF”都是“ABCDEFG”的子序列。 最长公共子序列(LCS) 问题: 给定两个序列X和Y,求X和Y长度最大的公共子字列。 例:X=\\\"ABBCBDE”Y=\\\"DBBCDB”LCS(XY)=\\\"BBCD\\\" 应用场景:字符串相似度比对 (1)问题思考 思考: 暴

    2024年02月08日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包