防护服穿戴检测识别算法 yolov8

这篇具有很好参考价值的文章主要介绍了防护服穿戴检测识别算法 yolov8。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

防护服穿戴检测识别系统基于yolov8网络模型图片数据识别训练,算法模型自动完成对现场人员是否按照要求穿戴行为实时分析。YOLOv8 算法的核心特性和改动可以归结为如下:提供了一个全新的 SOTA 模型,包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求。Backbone:骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数。

属于对模型结构精心微调,不再是无脑一套参数应用所有模型,大幅提升了模型性能。不过这个 C2f 模块中存在 Split 等操作对特定硬件部署没有之前那么友好了。Head: Head部分较yolov5而言有两大改进:1)换成了目前主流的解耦头结构(Decoupled-Head),将分类和检测头分离 2)同时也从 Anchor-Based 换成了 Anchor-Free

Loss :1) YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner正负样本匹配方式。2)并引入了 Distribution Focal Loss(DFL)

Train:训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度。

从上面可以看出,YOLOv8 主要参考了最近提出的诸如 YOLOX、YOLOv6、YOLOv7 和 PPYOLOE 等算法的相关设计,本身的创新点不多,偏向工程实践,主推的还是 ultralytics 这个框架本身。将按照模型结构设计、Loss 计算、训练数据增强、训练策略和模型推理过程共 5 个部分详细介绍 YOLOv8 目标检测的各种改进,实例分割部分暂时不进行描述。

Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;
PAN-FPN:YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的CBS 1*1的卷积结构删除了,同时也将C3模块替换为了C2f模块;Decoupled-Head:YOLOv8使用了Decoupled-Head;Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式。

防护服穿戴检测识别算法 yolov8
 

Adapter接口定义了如下方法:

public abstract void registerDataSetObserver (DataSetObserver observer)

Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。

public abstract void unregisterDataSetObserver (DataSetObserver observer)

通过调用unregisterDataSetObserver方法,反注册观察者。

public abstract int getCount () 返回Adapter中数据的数量。

public abstract Object getItem (int position)

Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。

public abstract long getItemId (int position)

获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。

public abstract boolean hasStableIds ()

hasStableIds表示当数据源发生了变化的时候,原有数据项的id会不会发生变化,如果返回true表示Id不变,返回false表示可能会变化。Android所提供的Adapter的子类(包括直接子类和间接子类)的hasStableIds方法都返回false。

public abstract View getView (int position, View convertView, ViewGroup parent)

getView是Adapter中一个很重要的方法,该方法会根据数据项的索引为AdapterView创建对应的UI项。文章来源地址https://www.toymoban.com/news/detail-436280.html

到了这里,关于防护服穿戴检测识别算法 yolov8的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于YOLOv8的人脸检测小目标识别算法:Gold-YOLO,信息聚集-分发(Gather-and-Distribute Mechanism)机制 | 华为诺亚NeurIPS23

     🚀🚀🚀 本文改进: 全新的 信息聚集-分发(Gather-and-Distribute Mechanism)GD机制,替代YOLOv8 Neck,实现创新 🚀🚀🚀 Gold-YOLO在人脸检测小目标识别算法中, mAP@0.5从原始的0.929提升至0.935,mAP50-95从原始的0.43提升至0.435 🚀🚀🚀 YOLOv8改进专栏: 学姐带你学习YOLOv8,从入门到创

    2024年03月17日
    浏览(74)
  • 基于YOLOv8开发构建蝴蝶目标检测识别系统

    在前面的一篇博文中已经很详细地描述了如何基于YOLOv8开发构建自己的个性化目标检测模型,感兴趣的话可以看下: 《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例】》 本文的主要目的就是基于YOLOv8来开发构建细粒度的蝴蝶目标检测分析系统,

    2024年02月15日
    浏览(43)
  • 目标检测算法——YOLOV8——算法详解

        主要的创新点:其实到了YOLOV5 基本创新点就不太多了,主要就是大家互相排列组合复用不同的网络模块、损失函数和样本匹配策略。     Yolo v8 主要涉及到:backbone 使用C2f模块,检测头使用了anchor-free + Decoupled-head,损失函数使用了分类BCE、回归CIOU + VFL(新增项目)的

    2024年02月03日
    浏览(44)
  • YOLOv8目标检测算法

    YOLOv8目标检测算法相较于前几代YOLO系列算法具有如下的几点优势: 更友好的安装/运行方式 速度更快、准确率更高 新的backbone,将YOLOv5中的C3更换为C2F YOLO系列第一次尝试使用anchor-free 新的损失函数 YOLOv8 是 Ultralytics 公司继 YOLOv5 算法之后开发的下一代算法模型,目前支持图像

    2024年02月13日
    浏览(47)
  • C# Onnx Yolov8 Fire Detect 火焰识别,火灾检测

    目录 效果 ​模型信息 项目 ​代码 下载  Model Properties ------------------------- author:Ultralytics task:detect license:AGPL-3.0 https://ultralytics.com/license version:8.0.172 stride:32 batch:1 imgsz:[640, 640] names:{0: \\\'Fire\\\'} --------------------------------------------------------------- Inputs -------------------------

    2024年02月07日
    浏览(49)
  • 基于Yolov8的中国交通标志(CCTSDB)识别检测系统

    目录 1.Yolov8介绍 2.纸箱破损数据集介绍 2.1数据集划分 2.2 通过voc_label.py得到适合yolov8训练需要的 2.3生成内容如下 3.训练结果分析          Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的(SOTA)模型,它建立在先

    2024年02月09日
    浏览(83)
  • 【深度学习目标检测】七、基于深度学习的火灾烟雾识别(python,目标检测,yolov8)

    YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。 YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。 YOLOv8采用了Darknet-53作为其基础网络架构。Darknet-53是一

    2024年04月13日
    浏览(60)
  • 打架斗殴监测识别算法 yolov8

    打架斗殴监测识别算法采用yolov8先进的图像处理和机器学习算法框架模型,打架斗殴监测识别算法能够自动识别和分析出打架斗殴的行为特征。一旦系统检测到打架斗殴行为,将自动触发告警。YOLO的结构非常简单,就是单纯的卷积、池化最后加了两层全连接,从网络结构上看

    2024年02月11日
    浏览(35)
  • 穿戴规范智能识别系统 yolov7

    穿戴规范智能识别系统通过yolov7+python网络模型AI深度视觉学习算法,穿戴规范智能识别系统对工厂画面中人员穿戴行为自动识别分析,发现现场人员未按照规定穿戴着装,立即抓拍告警。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动

    2023年04月09日
    浏览(35)
  • YOLOv8/YOLOv7/YOLOv5+CRNN-车牌识别、车牌关键点定位、车牌检测(毕业设计)

    本项目通过yolov8/yolov7/yolov5+CRNN训练自己的数据集,实现了一个车牌识别、车牌关键点定位、车牌检测算法,可实现12种单双层车牌的字符识别:单行蓝牌、单行黄牌、新能源车牌、白色警用车牌、教练车牌、武警车牌、双层黄牌、双层白牌、使馆车牌、港澳粤Z牌、双层绿牌、

    2024年02月03日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包