此示例演示如何构建适用于无人机 (UAV) 或四轴飞行器的 IMU + GPS 融合算法。此示例使用加速度计、陀螺仪、磁力计和 GPS 来确定无人机的方向和位置。
一、模拟设置
设置采样率。在典型系统中,加速度计和陀螺仪以相对较高的采样率运行。在融合算法中处理来自这些传感器的数据的复杂性相对较低。相反,GPS以及在某些情况下的磁力计以相对较低的采样率运行,并且与处理它们相关的复杂性很高。在该融合算法中,磁力计和GPS样本以相同的低速率一起处理,加速度计和陀螺仪样本以相同的高速率一起处理。
为了模拟此配置,IMU(加速度计、陀螺仪和磁力计)以 160 Hz 采样,GPS 以 1 Hz 采样。磁力计的每 160 个样本中只有一个被提供给融合算法,因此在实际系统中,磁力计的采样率要低得多。
二、融合过滤器
创建过滤器以融合 IMU + GPS 测量值。融合滤波器使用扩展的卡尔曼滤波器来跟踪方向(作为四元数)、速度、位置、传感器偏差和地磁矢量。
这有几种处理传感器数据的方法,包括,和。该方法将来自IMU的加速度计和陀螺仪样本作为输入。每次对加速度计和陀螺仪进行采样时调用该方法。此方法根据加速度计和陀螺仪提前一个时间步预测状态。扩展卡尔曼滤波器的误差协方差在此处更新。文章来源:https://www.toymoban.com/news/detail-436556.html
该方法以GPS样本作为输入。该方法通过计算卡尔曼增益来更新基于 GPS 样本的滤波器状态,该增益根据各种传文章来源地址https://www.toymoban.com/news/detail-436556.html
到了这里,关于基于Matlab构建适用于无人机或四轴飞行器的IMU+GPS融合算法(附源码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!