自动驾驶规划 - 5次多项式拟合

这篇具有很好参考价值的文章主要介绍了自动驾驶规划 - 5次多项式拟合。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

简介

自动驾驶运动规划中会用到各种曲线,主要用于生成车辆的轨迹,常见的轨迹生成算法,如贝塞尔曲线,样条曲线,以及apollo EM Planner的五次多项式曲线,城市场景中使用的是分段多项式曲线,在EM Planner和Lattice Planner中思路是,都是先通过动态规划生成点,再用5次多项式生成曲线连接两个点(虽然后面的版本改动很大,至少lattice planner目前还是这个方法)。

在这里可以看出5次多项式的作用,就是生成轨迹,这里的轨迹不一定是车行驶的轨迹,比如S—T图中的线,是用来做速度规划的。 如下图:

自动驾驶规划 - 5次多项式拟合

在apollo里面用到了,3-5次多项式,

  • cubic_polynomial_curve1d,三次多项式曲线
  • quartic_polynomial_curve1d,四次多项式曲线-
  • quintic_polynomial_curve1d,五次多项式曲线

3次多项式

f ( x ) = C 0 + C 1 x + C 2 x 2 + C 3 x 3 − − − − ( 1 ) f(x) = C_0 + C_1x + C_2x^2+ C_3x^3 ----(1) f(x)=C0+C1x+C2x2+C3x3(1)
x求导====>
f ′ ( x ) = C 1 + 2 C 2 x + 3 C 3 x 2 f'(x) = C_1 + 2C_2x+ 3C_3x^2 f(x)=C1+2C2x+3C3x2
f ( x ) = 2 C 2 + 6 C 3 x f(x) = 2C_2+ 6C_3x f(x)=2C2+6C3x
因为是连接两个已知点,所以两个轨迹点的信息是已知的。
如已知,当x=0,代如得:
f ( 0 ) = C 0 ; f ′ ( 0 ) = C 1 ; f ′ ′ ( 0 ) = 2 C 2 f(0) = C_0 ; f'(0) = C_1;f''(0) =2C_2 f(0)=C0f(0)=C1f(0)=2C2

所以
C 0 = f ( 0 ) ; C 1 = f ′ ( 0 ) ; C 2 = f ′ ′ ( 0 ) / 2 C_0 = f(0);C_1 = f'(0); C_2 = f''(0)/2 C0=f(0)C1=f(0)C2=f(0)/2
将终点 (X_end,f(X_end))带入得到C_3

C 3 = ( f ( x p ) − C 0 − C 1 x p − C 2 x p 2 ) / x p 3 C_3 = (f(x_p)-C_0-C_1x_p-C_2x_p^2)/x_p^3 C3=(f(xp)C0C1xpC2xp2)/xp3

(1)式的所有未知参数都求出,代入x可以得到两点间的轨迹。

apollo中3次多项式的计算

// cubic_polynomial_curve1d.cc
CubicPolynomialCurve1d::CubicPolynomialCurve1d(const double x0,
                                               const double dx0,
                                               const double ddx0,
                                               const double x1,
                                               const double param) {
  ComputeCoefficients(x0, dx0, ddx0, x1, param);
  param_ = param;
  start_condition_[0] = x0;
  start_condition_[1] = dx0;
  start_condition_[2] = ddx0;
  end_condition_ = x1;
}

void CubicPolynomialCurve1d::ComputeCoefficients(const double x0,
                                                 const double dx0,
                                                 const double ddx0,
                                                 const double x1,
                                                 const double param) {
  DCHECK(param > 0.0);
  const double p2 = param * param;
  const double p3 = param * p2;
  coef_[0] = x0;
  coef_[1] = dx0;
  coef_[2] = 0.5 * ddx0;
  coef_[3] = (x1 - x0 - dx0 * param - coef_[2] * p2) / p3;
}

5次多项式

f ( x ) = C 0 + C 1 x + C 2 x 2 + C 3 x 3 + C 4 x 4 + C 5 x 5 − − − − ( 3 − 1 ) f(x) = C_0 + C_1x + C_2x^2+ C_3x^3+C_4x^4+C_5x^5 ----(3-1) f(x)=C0+C1x+C2x2+C3x3+C4x4+C5x5(31)
x求导====>
f ′ ( x ) = C 1 + 2 C 2 x + 3 C 3 x 2 + 4 C 4 x 3 + 5 C 5 x 4 − − − − ( 3 − 2 ) f'(x) = C_1 + 2C_2x+ 3C_3x^2+4C_4x^3+5C_5x^4----(3-2) f(x)=C1+2C2x+3C3x2+4C4x3+5C5x4(32)

f ′ ′ ( x ) = 2 C 2 + 6 C 3 x + 12 C 4 x 2 + 20 C 5 x 3 − − − − ( 3 − 3 ) f''(x) = 2C_2+ 6C_3x+12C_4x^2+20C_5x^3----(3-3) f(x)=2C2+6C3x+12C4x2+20C5x3(33)
因为是连接两个已知点,所以两个轨迹点的信息是已知的。
如已知,当x=0,代如得:
f ( 0 ) = C 0 ; f ′ ( 0 ) = C 1 ; f ′ ′ ( 0 ) = 2 C 2 f(0) = C_0 ; f'(0) = C_1;f''(0) =2C_2 f(0)=C0f(0)=C1f(0)=2C2

所以
C 0 = f ( 0 ) ; C 1 = f ′ ( 0 ) ; C 2 = f ′ ′ ( 0 ) / 2 C_0 = f(0);C_1 = f'(0); C_2 = f''(0)/2 C0=f(0)C1=f(0)C2=f(0)/2
将终点 (x_e,f(x_e))带入 (3-1) (3-2) (3-3)

得到
f ( x e ) = C 0 + C 1 x e + C 2 x e 2 + C 3 x e 3 + C 4 x e 4 + C 5 x e 5 − − − − ( 3 − 4 ) f(x_e) = C_0 + C_1x_e + C_2x_e^2+ C_3x_e^3+C_4x_e^4+C_5x_e^5 ----(3-4) f(xe)=C0+C1xe+C2xe2+C3xe3+C4xe4+C5xe5(34)
x求导====>
f ′ ( x ) = C 1 + 2 C 2 x e + 3 C 3 x e 2 + 4 C 4 x e 3 + 5 C 5 x e 4 − − − − ( 3 − 5 ) f'(x) = C_1 + 2C_2x_e+ 3C_3x_e^2+4C_4x_e^3+5C_5x_e^4----(3-5) f(x)=C1+2C2xe+3C3xe2+4C4xe3+5C5xe4(35)

f ′ ′ ( x ) = 2 C 2 + 6 C 3 x e + 12 C 4 x e 2 + 20 C 5 x e 3 − − − − ( 3 − 6 ) f''(x) = 2C_2+ 6C_3x_e+12C_4x_e^2+20C_5x_e^3----(3-6) f(x)=2C2+6C3xe+12C4xe2+20C5xe3(36)

联立可得
C 3 = 10 ( f ( x p ) − 1 / 2 ∗ f ′ ′ ( 0 ) x p 2 − f ′ ( 0 ) x p − f ( 0 ) ) − 4 ( f ′ ( x p ) − f ′ ′ ( 0 ) x p − f ′ ( 0 ) ) x p + 1 / 2 ∗ ( f ′ ′ ( x p ) − f ′ ′ ( 0 ) ) x p 2 x p 3 C_3 = \frac{10(f(x_p)-1/2*f''(0)x_p^2-f'(0)x_p-f(0))-4(f'(x_p)-f''(0)x_p-f'(0))x_p+1/2*(f''(x_p)-f''(0))x_p^2}{x_p^3} C3=xp310(f(xp)1/2f(0)xp2f(0)xpf(0))4(f(xp)f(0)xpf(0))xp+1/2(f(xp)f(0))xp2

C 4 = − 15 ( f ( x p ) − 1 / 2 ∗ f ′ ′ ( 0 ) x p 2 − f ′ ( 0 ) x p − f ( 0 ) ) + 7 ( f ′ ( x p ) − f ′ ′ ( 0 ) x p − f ′ ( 0 ) ) x p − 1 / 2 ∗ ( f ′ ′ ( x p ) − f ′ ′ ( 0 ) ) x p 2 x p 4 C_4 = \frac{-15(f(x_p)-1/2*f''(0)x_p^2-f'(0)x_p-f(0))+7(f'(x_p)-f''(0)x_p-f'(0))x_p-1/2*(f''(x_p)-f''(0))x_p^2}{x_p^4} C4=xp415(f(xp)1/2f(0)xp2f(0)xpf(0))+7(f(xp)f(0)xpf(0))xp1/2(f(xp)f(0))xp2

C 5 = 6 ( f ( x p ) − 1 / 2 ∗ f ′ ′ ( 0 ) x p 2 − f ′ ( 0 ) x p − f ( 0 ) ) − 3 ( f ′ ( x p ) − f ′ ′ ( 0 ) x p − f ′ ( 0 ) ) x p + 1 / 2 ∗ ( f ′ ′ ( x p ) − f ′ ′ ( 0 ) ) x p 2 x p 5 C_5 = \frac{6(f(x_p)-1/2*f''(0)x_p^2-f'(0)x_p-f(0))-3(f'(x_p)-f''(0)x_p-f'(0))x_p+1/2*(f''(x_p)-f''(0))x_p^2}{x_p^5} C5=xp56(f(xp)1/2f(0)xp2f(0)xpf(0))3(f(xp)f(0)xpf(0))xp+1/2(f(xp)f(0))xp2

apollo中5次多项式的计算

void QuinticPolynomialCurve1d::ComputeCoefficients(
    const double x0, const double dx0, const double ddx0, const double x1,
    const double dx1, const double ddx1, const double p) {
  CHECK_GT(p, 0.0);

  coef_[0] = x0;
  coef_[1] = dx0;
  coef_[2] = ddx0 / 2.0;

  const double p2 = p * p;
  const double p3 = p * p2;

  // the direct analytical method is at least 6 times faster than using matrix
  // inversion.
  const double c0 = (x1 - 0.5 * p2 * ddx0 - dx0 * p - x0) / p3;
  const double c1 = (dx1 - ddx0 * p - dx0) / p2;
  const double c2 = (ddx1 - ddx0) / p;

  coef_[3] = 0.5 * (20.0 * c0 - 8.0 * c1 + c2);
  coef_[4] = (-15.0 * c0 + 7.0 * c1 - c2) / p;
  coef_[5] = (6.0 * c0 - 3.0 * c1 + 0.5 * c2) / p2;
}

5次多项式拟合

import math

import matplotlib.pyplot as plt
import numpy as np

# parameter
MAX_T = 100.0  # maximum time to the goal [s]
MIN_T = 5.0  # minimum time to the goal[s]

show_animation = True

class QuinticPolynomial:

    def __init__(self, xs, vxs, axs, xe, vxe, axe, time):
        # calc coefficient of quintic polynomial
        # See jupyter notebook document for derivation of this equation.
        # 根据初始状态c0 c1 c2
        self.a0 = xs # x(t)
        self.a1 = vxs # v(t)
        self.a2 = axs / 2.0 # a(t)

        A = np.array([[time ** 3, time ** 4, time ** 5],
                      [3 * time ** 2, 4 * time ** 3, 5 * time ** 4],
                      [6 * time, 12 * time ** 2, 20 * time ** 3]])
        b = np.array([xe - self.a0 - self.a1 * time - self.a2 * time ** 2,
                      vxe - self.a1 - 2 * self.a2 * time,
                      axe - 2 * self.a2])
        # Ax=b 求解x
        x = np.linalg.solve(A, b)
        # 计算c3 c4 c5
        self.a3 = x[0]
        self.a4 = x[1]
        self.a5 = x[2]
    # 根据时间计算点x(t)
    def calc_point(self, t):
        xt = self.a0 + self.a1 * t + self.a2 * t ** 2 + \
             self.a3 * t ** 3 + self.a4 * t ** 4 + self.a5 * t ** 5
        return xt
    # 计算v(t)
    def calc_first_derivative(self, t):
        xt = self.a1 + 2 * self.a2 * t + \
             3 * self.a3 * t ** 2 + 4 * self.a4 * t ** 3 + 5 * self.a5 * t ** 4

        return xt
    # 计算a(t)  
    def calc_second_derivative(self, t):
        xt = 2 * self.a2 + 6 * self.a3 * t + 12 * self.a4 * t ** 2 + 20 * self.a5 * t ** 3

        return xt
    # 计算jerk(t)  
    def calc_third_derivative(self, t):
        xt = 6 * self.a3 + 24 * self.a4 * t + 60 * self.a5 * t ** 2

        return xt


def quintic_polynomials_planner(sx, sy, syaw, sv, sa, gx, gy, gyaw, gv, ga, max_accel, max_jerk, dt):
    """
    quintic polynomial planner

    input
        s_x: start x position [m]
        s_y: start y position [m]
        s_yaw: start yaw angle [rad]
        sa: start accel [m/ss]
        gx: goal x position [m]
        gy: goal y position [m]
        gyaw: goal yaw angle [rad]
        ga: goal accel [m/ss]
        max_accel: maximum accel [m/ss]
        max_jerk: maximum jerk [m/sss]
        dt: time tick [s]

    return
        time: time result
        rx: x position result list
        ry: y position result list
        ryaw: yaw angle result list
        rv: velocity result list
        ra: accel result list

    """

    vxs = sv * math.cos(syaw)# 起点速度在x方向分量
    vys = sv * math.sin(syaw)# 起点速度在y方向分量
    vxg = gv * math.cos(gyaw)# 终点速度在x方向分量
    vyg = gv * math.sin(gyaw)# 终点速度在y方向分量

    axs = sa * math.cos(syaw)# 起点加速度在x方向分量
    ays = sa * math.sin(syaw)# 终点加速度在y方向分量
    axg = ga * math.cos(gyaw)# 起点加速度在x方向分量
    ayg = ga * math.sin(gyaw)# 终点加速度在y方向分量

    time, rx, ry, ryaw, rv, ra, rj = [], [], [], [], [], [], []

    for T in np.arange(MIN_T, MAX_T, MIN_T):
        xqp = QuinticPolynomial(sx, vxs, axs, gx, vxg, axg, T)
        yqp = QuinticPolynomial(sy, vys, ays, gy, vyg, ayg, T)

        time, rx, ry, ryaw, rv, ra, rj = [], [], [], [], [], [], []

        for t in np.arange(0.0, T + dt, dt):
            time.append(t)
            rx.append(xqp.calc_point(t))
            ry.append(yqp.calc_point(t))

            vx = xqp.calc_first_derivative(t)
            vy = yqp.calc_first_derivative(t)
            v = np.hypot(vx, vy)
            yaw = math.atan2(vy, vx)
            rv.append(v)
            ryaw.append(yaw)

            ax = xqp.calc_second_derivative(t)
            ay = yqp.calc_second_derivative(t)
            a = np.hypot(ax, ay)
            if len(rv) >= 2 and rv[-1] - rv[-2] < 0.0:
                a *= -1
            ra.append(a)

            jx = xqp.calc_third_derivative(t)
            jy = yqp.calc_third_derivative(t)
            j = np.hypot(jx, jy)
            if len(ra) >= 2 and ra[-1] - ra[-2] < 0.0:
                j *= -1
            rj.append(j)

        if max([abs(i) for i in ra]) <= max_accel and max([abs(i) for i in rj]) <= max_jerk:
            print("find path!!")
            break

    if show_animation:  # pragma: no cover
        for i, _ in enumerate(time):
            plt.cla()
            # for stopping simulation with the esc key.
            plt.gcf().canvas.mpl_connect('key_release_event',
                                         lambda event: [exit(0) if event.key == 'escape' else None])
            plt.grid(True)
            plt.axis("equal")
            plot_arrow(sx, sy, syaw)
            plot_arrow(gx, gy, gyaw)
            plot_arrow(rx[i], ry[i], ryaw[i])
            plt.title("Time[s]:" + str(time[i])[0:4] +
                      " v[m/s]:" + str(rv[i])[0:4] +
                      " a[m/ss]:" + str(ra[i])[0:4] +
                      " jerk[m/sss]:" + str(rj[i])[0:4],
                      )
            plt.pause(0.001)

    return time, rx, ry, ryaw, rv, ra, rj


def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):  # pragma: no cover
    """
    Plot arrow
    """

    if not isinstance(x, float):
        for (ix, iy, iyaw) in zip(x, y, yaw):
            plot_arrow(ix, iy, iyaw)
    else:
        plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw),
                  fc=fc, ec=ec, head_width=width, head_length=width)
        plt.plot(x, y)


def main():

    sx = 10.0  # start x position [m]
    sy = 10.0  # start y position [m]
    syaw = np.deg2rad(10.0)  # start yaw angle [rad]
    sv = 1.0  # start speed [m/s]
    sa = 0.1  # start accel [m/ss]
    gx = 30.0  # goal x position [m]
    gy = -10.0  # goal y position [m]
    gyaw = np.deg2rad(20.0)  # goal yaw angle [rad]
    gv = 1.0  # goal speed [m/s]
    ga = 0.1  # goal accel [m/ss]
    max_accel = 1.0  # max accel [m/ss]
    max_jerk = 0.5  # max jerk [m/sss]
    dt = 0.1  # time tick [s]

    time, x, y, yaw, v, a, j = quintic_polynomials_planner(
        sx, sy, syaw, sv, sa, gx, gy, gyaw, gv, ga, max_accel, max_jerk, dt)

    if show_animation:  # pragma: no cover
        plt.plot(x, y, "-r")

        plt.subplots()
        plt.plot(time, [np.rad2deg(i) for i in yaw], "-r")
        plt.xlabel("Time[s]")
        plt.ylabel("Yaw[deg]")
        plt.grid(True)

        plt.subplots()
        plt.plot(time, v, "-r")
        plt.xlabel("Time[s]")
        plt.ylabel("Speed[m/s]")
        plt.grid(True)

        plt.subplots()
        plt.plot(time, a, "-r")
        plt.xlabel("Time[s]")
        plt.ylabel("accel[m/ss]")
        plt.grid(True)

        plt.subplots()
        plt.plot(time, j, "-r")
        plt.xlabel("Time[s]")
        plt.ylabel("jerk[m/sss]")
        plt.grid(True)

        plt.show()


if __name__ == '__main__':
    main()

自动驾驶规划 - 5次多项式拟合
自动驾驶规划 - 5次多项式拟合

上图模拟了车辆曲线的拟合过程的轨迹,箭头代表方向。

过程的速度自动驾驶规划 - 5次多项式拟合

感觉5次多项式和贝塞尔曲线还是挺像的,有时间写一篇五次多项式、贝塞尔曲线、样条曲线的对比。

还有一个问题就是为啥要用5次多项式,而不是4次,6次更高阶或者低阶呢?下回复习一下老王的讲解。
参考:文章来源地址https://www.toymoban.com/news/detail-436810.html

  • https://blog.csdn.net/qq_36458461/article/details/110007656
  • https://zhuanlan.zhihu.com/p/567375631

到了这里,关于自动驾驶规划 - 5次多项式拟合的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Matlab作图多项式拟合

    一、拟合函数 polyfit(s,y,n) polyval(p,x) poly2str(p,\\\' x \\\' ) 二、拟合步骤 1.做原始数据的散点图 2.选择恰当的次数n,用polyfit指令求得多项式 3.计算多项式p在x处的值 4.画出多项式函数的曲线图 三、拟合实例 对x等于1-10,y大于20小于40的随机数进行多项式拟合 x=1:10;y=20+20*rand(1,10);%定义

    2023年04月25日
    浏览(45)
  • pytorch 欠拟合和过拟合 多项式回归

        训练误差和验证误差都有,还可能比较严重, 但它们之间仅有差距不大。 这个时候模型不能降低训练的误差,有可能是我们设计的模型简单了,表达能力不足, 捕获试图学习的模式比较难。由于我们的训练和验证误差之间的泛化误差很小, 这个时候我们认为可以用一

    2024年02月16日
    浏览(38)
  • Python做曲线拟合(一元多项式拟合及任意函数拟合)

    目录 1. 一元多项式拟合 使用方法 np.polyfit(x, y, deg) 2. 任意函数拟合 使用 curve_fit() 方法 实例: (1)初始化 x 和 y 数据集 (2)建立自定义函数 (3)使用自定义的函数生成拟合函数绘图  polyfig 使用的是最小二乘法,用于拟合一元多项式函数。 参数说明: x 就是x坐标,

    2024年02月02日
    浏览(49)
  • matlab RANSAC拟合多项式曲线

    本文由CSDN点云侠原创,原文链接。爬虫网站自重,把自己当个人。爬些不完整的误导别人有意思吗????

    2024年02月12日
    浏览(45)
  • 【Matlab】最小二乘法拟合多项式

    在最近的电机项目中,有遇到有传感器数据并不线性的问题,然后想要用最小二乘法做个曲线拟合,反过来去校准不线性的传感器的数据,因此记录一下使用最小二乘法来拟合多项式的曲线的步骤。本篇从最小二乘法的原始公式入手编写M文件,目的是方便使用单片机实现,或

    2023年04月22日
    浏览(43)
  • MATLAB polyfit函数——多项式拟合

        此函数用一个n次多项式来拟合一组数据点(x,y),并且将多项式系数以数组p的形式输出,p中的系数按降幂排列,数组长度为 n+1。     如果要将拟合好的多项式系数绘制出来,可以使用polyval函数:     此函数的作用是对给定的x1的值,通过多项式系数数组p计算对应的y1值

    2024年02月16日
    浏览(43)
  • Matlab 线性拟合、一维、多维度非线性拟合、多项式拟合

      线性拟合 我随便设定一个函数然后通过解方程计算出对应的系数 假设我的函数原型是 y=a*sin(0.1*x.^2+x)+b* squre(x+1)+c*x+d  拟合系数:   利用matlab实现非线性拟合(三维、高维、参数方程)_matlab多元非线性拟合_hyhhyh21的博客-CSDN博客 简单的一维的拟合: 思路: 将非线性-》线

    2024年02月12日
    浏览(46)
  • 数学建模--多项式拟合方法Python实现

    目录    1.算法设计思路  2.算法核心代码  3.算法效果展示 1.算法设计思路  2.算法核心代码  3.算法效果展示

    2024年02月07日
    浏览(42)
  • 数学建模--非多项式拟合法的Python实现

    目录   1.算法异同区别   2.算法核心步骤   3.算法核心代码   4.算法效果展示 1.算法异同区别   2.算法核心步骤   3.算法核心代码   4.算法效果展示

    2024年02月09日
    浏览(33)
  • MATLAB 利用RANSAC对多项式进行点拟合 (32)

    通过对给定的一小组点进行抽样并生成多项式拟合,得到多项式系数 P。返回 maxRange 中具有最多 inlier 值的拟合。如果找不到匹配,则返回空的 P。该函数使用 M 估计量样本一致性(MSAC)算法,一种随机样本一致性(RANSAC)算法的变体来拟合数据。 主要使用的函数和内部的参数含义

    2024年02月15日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包