激活函数ReLU和SiLU的区别

这篇具有很好参考价值的文章主要介绍了激活函数ReLU和SiLU的区别。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

在这里,我就简单写一下两个激活函数的概念以及区别,详细的过程可以看看其他优秀的博主,他们写的已经非常好了,我就不必再啰嗦了。
ReLU(Rectified Linear Unit)和SiLU(Sigmoid Linear Unit)都是常用的激活函数,它们的主要区别在于非线性形状不同。

ReLU(Rectified Linear Unit)

概念:
ReLU函数在输入大于0时直接输出,否则输出0。它的数学形式为f(x) = max(0, x),可以看作是一个分段函数,具有非常好的计算性质,使得神经网络的训练更加高效。
激活函数ReLU和SiLU的区别

Leaky ReLU

概念:
Leaky ReLU是ReLU的一种变体,改变之处在于 负数的输出不再是0了,而是一个很小的数值,比如0.1或0.01
优点:
Leaky ReLU的优点在于可以避免出现“神经元死亡”的情况,即在训练过程中某些神经元的输出始终为0,从而导致无法更新其权重,而Leaky ReLU可以在一定程度上解决这个问题。

FReLU(Flatten ReLU)

概念:
FReLU将输入展平(flatten)成一个一维向量,然后对每个元素应用ReLU激活函数,最后再将输出重新恢复成原来的形状。

优点:

  1. 减少参数量:FReLU不需要额外的参数,因此可以减少模型的参数量。
  2. 具有更好的表示能力:由于FReLU可以将输入展平成一维向量,因此可以在不增加参数量的情况下提高模型的表示能力。
  3. 提高模型的鲁棒性:由于FReLU对输入进行了展平操作,因此可以提高模型对输入的鲁棒性,从而减少过拟合的风险。

SiLU(Sigmoid Linear Unit)

相对于ReLU函数,SiLU函数在接近零时具有更平滑的曲线,并且由于其使用了sigmoid函数,可以使网络的输出范围在0和1之间。这使得SiLU在一些应用中比ReLU表现更好,例如在语音识别中使用SiLU比ReLU可以取得更好的效果。
激活函数ReLU和SiLU的区别

🤬------------注意----------🤬:

在使用SiLU时,如果数据存在过大或过小的情况,可能会导致梯度消失或梯度爆炸,因此需要进行一些调整,例如对输入数据进行归一化等。而ReLU在这方面较为稳定,不需要过多的处理。

总结

  • 相较于ReLU函数,SiLU函数可能会更适合一些需要保留更多输入信息的场景。
  • ReLU和SiLU都是常用的激活函数,具有各自的优点和适用范围,需要根据具体情况进行选择。

图片来自于:
https://blog.csdn.net/long630576366/article/details/128854678文章来源地址https://www.toymoban.com/news/detail-437656.html

到了这里,关于激活函数ReLU和SiLU的区别的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 神经网络激活函数--Sigmoid、Tanh、Relu、Softmax

    本文主要总结了Sigmoid、Tanh、Relu、Softmax 四种函数;给出了函数的形式,优缺点和图像。 sigmoid和Tanh函数的导数简单,但是可能出现梯度弥散。 ReLU函数仅保留正元素,有良好的特性。 Softmax一般是用于分类最后一层的归一化。 目录 1.Sigmoid 函数 2.Tanh函数  3.Relu函数 4.Softmax函

    2024年01月19日
    浏览(40)
  • Transformer模型-Feed Forward前馈网络和Relu激活函数的简明介绍

     今天介绍transformer模型的Feed Forward network前馈网络和Relu激活函数 位置感知Position-Wise前馈网络(FFN)由 两个全连接层 (fully connected dense layers,就是线性层(Linear Layer),或密集层(Dense Layer))组成,或者也可以称为多层感知机(MLP:multi-layer perceptron)。  参见: Transfor

    2024年04月13日
    浏览(36)
  • 【YOLOv7/YOLOv5系列算法改进NO.54】改进激活函数为ReLU、RReLU、Hardtanh、ReLU6、Sigmoid、Tanh、Mish、Hardswish、ELU、CELU等

    作为当前先进的深度学习目标检测算法YOLOv7,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv7的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程

    2023年04月22日
    浏览(44)
  • 【学习经验分享NO.16】超全代码-python画Sigmoid,ReLU,Tanh等十多种激活函数曲线及其梯度曲线(持续更新)

    激活函数是一种特殊的非线性函数,它能够在神经网络中使用,其作用是将输入信号转化成输出信号。它将神经元中的输入信号转换为一个有意义的输出,从而使得神经网络能够学习和识别复杂的模式。常用的激活函数有 Sigmoid、ReLU、Leaky ReLU 和 ELU 等。大论文理论部分需要介

    2023年04月08日
    浏览(58)
  • 高斯误差线性单元激活ReLU以外的神经网络

    高斯误差线性单位(GELU)激活函数由加州大学伯克利分校的Dan Hendrycks和芝加哥丰田技术研究所的Kevin Gimpel于2018年引入。激活函数是触发神经元输出的“开关”,随着网络的深入,其重要性也随之增加。最近几周,机器学习社区中的一些讨论使GELU重新成为人们关注的焦点。

    2024年02月16日
    浏览(39)
  • relu函数的作用

    ReLU (Rectified Linear Unit) 是一种常用的激活函数,其定义为 f ( x ) = max ⁡ ( 0 , x ) f(x) = max(0, x) f ( x ) = max ( 0 , x ) 。它的作用是将输入值限制在非负范围内,并且在正半轴上具有线性性质。ReLU 激活函数在深度学习中应用广泛,主要有以下几个作用: 增强模型非线性能力:ReLU 可

    2024年02月12日
    浏览(41)
  • 机器学习-sigmoid函数和relu函数-个人解读

    今天博主来解读一下sigmoid函数和relu函数,我觉得很多同学可能都知道这两个函数是什么,他们干什么的,他们有什么用,但是呢?我想这两个常用的激活函数内在的本质,很多同学应该不是很理解,今天博主就给出自己的一些解读。 首先,我们先谈谈激活函数是什么: 激活

    2024年02月16日
    浏览(37)
  • nn.Sequential、nn.Linear、nn.ReLU()函数

    nn.Sequential 是 PyTorch 中的一个容器模块,用于按照顺序组合多个神经网络层(如线性层、激活函数、池化层等)。这个容器允许你将各种层按照指定的顺序串联在一起,构建一个神经网络模型。nn.Sequential() 可以允许将整个容器视为单个模块(即相当于把多个模块封装成一个模

    2024年02月07日
    浏览(40)
  • 机器学习 day23(激活函数的作用,线性激活函数的不足)

    1. 线性激活函数的局限性 如果我们将神经网络模型中的所有激活函数都设为线性激活函数,那整个神经网络模型就跟线性回归模型极其相似,且它无法拟合比线性回归模型更复杂的关系 2. 激活函数全设为线性回归激活函数的例子 若把a¹带入a²,则a²可简化为wx+b,这与其使用

    2024年02月13日
    浏览(97)
  • 神经网络:激活函数

    在计算机视觉中,激活函数是神经网络中的一种非线性函数,用于引入非线性变换和非线性特性到网络中。激活函数的作用、原理和意义如下: 1. 引入非线性变换: 神经网络的线性组合层(如卷积层和全连接层)只能表示线性关系,而计算机视觉任务通常涉及到复杂的非线

    2024年02月11日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包