Python边缘检测之prewitt, sobel, laplace算子

这篇具有很好参考价值的文章主要介绍了Python边缘检测之prewitt, sobel, laplace算子。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

滤波算子简介

ndimage中提供了卷积算法,并且建立在卷积之上,提供了三种边缘检测的滤波方案:prewitt, sobel以及laplace

在convolve中列举了一个用于边缘检测的滤波算子,统一维度后,其 x x x y y y向的梯度算子分别写为

[ − 1 0 1 − 1 0 1 − 1 0 1 ] , [ − 1 − 1 − 1 0 0 0 1 1 1 ] \begin{bmatrix} -1&0&1\\-1&0&1\\-1&0&1\\ \end{bmatrix}, \begin{bmatrix} -1&-1&-1\\0&0&0\\1&1&1\\ \end{bmatrix} 111000111 , 101101101

此即prewitt算子。

Sobel算子为Prewitt增添了中心值的权重,记为

[ − 1 0 1 − 2 0 2 − 1 0 1 ] , [ − 1 − 2 − 1 0 0 0 1 2 1 ] \begin{bmatrix} -1&0&1\\-2&0&2\\-1&0&1\\ \end{bmatrix}, \begin{bmatrix} -1&-2&-1\\0&0&0\\1&2&1\\ \end{bmatrix} 121000121 , 101202101

这两种边缘检测算子,均适用于某一个方向,ndimage还提供了lapace算子,其本质是二阶微分算子,其 3 × 3 3\times3 3×3卷积模板可表示为

[ − 1 1 − 1 − 1 − 1 8 − 1 − 1 − 1 − 1 ] , \begin{bmatrix} -1&1-1&-1\\-1&8&-1\\-1&-1&-1\\ \end{bmatrix}, 1111181111 ,

具体实现

ndimage封装的这三种卷积滤波算法,定义如下

prewitt(input, axis=-1, output=None, mode='reflect', cval=0.0)
sobel(input, axis=-1, output=None, mode='reflect', cval=0.0)
laplace(input, output=None, mode='reflect', cval=0.0)

其中,mode表示卷积过程中对边缘效应的弥补方案,设待滤波数组为a b c d,则在不同的模式下,对边缘进行如下填充

左侧填充 数据 右侧填充
reflect d c b a a b c d d c b a
constant k k k k a b c d k k k k
nearest a a a a a b c d d d d d
mirror d c b a b c d c b a
wrap a b c d a b c d a b c d

测试

接下来测试一下

from scipy.ndimage import prewitt, sobel, laplace
from scipy.misc import ascent
import matplotlib.pyplot as plt
img = ascent()

dct = {
    "origin" : lambda img:img,
    "prewitt" : prewitt,
    "sobel" : sobel,
    "laplace" : lambda img : abs(laplace(img))
}

fig = plt.figure()
for i,key in enumerate(dct):
    ax = fig.add_subplot(2,2,i+1)
    ax.imshow(dct[key](img), cmap=plt.cm.gray)
    plt.ylabel(key)

plt.show()

为了看上去更加简洁,代码中将原图、prewitt滤波、sobel滤波以及laplace滤波封装在了一个字典中。其中origin表示原始图像,对应的函数是一个lambda表达式。

在绘图时,通过将cmap映射到plt.cm.gray,使得绘图之后表现为灰度图像。

效果如下

Python边缘检测之prewitt, sobel, laplace算子文章来源地址https://www.toymoban.com/news/detail-437768.html

到了这里,关于Python边缘检测之prewitt, sobel, laplace算子的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包