-
页面请求异步处理
将请求 扔进 kafka, Mq等
MQ单机抗几万并发也是ok的 -
底层批量处理
sql 处理 尽量批量处理,减少耗时 -
分库分表,
可能到了最后数据库层面还是免不了抗高并发的要求,好吧,那么就将一个数据库拆分为多个库,多个库来抗更高的并发;然后将一个表拆分为多个表,每个表的数据量保持少一点,提高sql跑的性能。
读写分离,这个就是说大部分时候数据库可能也是读多写少,没必要所有请求都集中在一个库上吧,可以搞个主从架构,主库写入,从库读取,搞一个读写分离。读流量太多的时候,还可以加更多的从库。
- 服务部署多port
分布式部署,k8s 弹性扩缩容
集群部署,三主三从等等等等
概念:
高并发需知道的吞吐量(TPS)、QPS、并发数、响应时间(RT)几个概念
吞吐量:
每秒查询率QPS是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准。一般而言,吞吐量是一个比较通用的指标,两个具有不同用户数和用户使用模式的系统,如果其最大吞吐量基本一致,则可以判断两个系统的处理能力基本一致。
QPS(每秒查询率):
每秒查询率QPS是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准,在因特网上,作为域名系统服务器的机器的性能经常用每秒查询率来衡量。对应fetches/sec,即每秒的响应请求数,也即是最大吞吐能力。
并发数:
并发用户数是指系统可以同时承载的正常使用系统功能的用户的数量。与吞吐量相比,并发用户数是一个更直观但也更笼统的性能指标。实际上,并发用户数是一个非常不准确的指标,因为用户不同的使用模式会导致不同用户在单位时间发出不同数量的请求。文章来源:https://www.toymoban.com/news/detail-438238.html
响应时间:
响应时间是指系统对请求作出响应的时间。文章来源地址https://www.toymoban.com/news/detail-438238.html
到了这里,关于-笔记 tps qps的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!