张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix)

这篇具有很好参考价值的文章主要介绍了张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix)
Python Numpy 切片和索引(高级索引、布尔索引、花式索引)
Python NumPy 广播(Broadcast)

张量(Tensor):Tensor = multi-dimensional array of numbers 张量是一个多维数组,它是标量,向量,矩阵的高维扩展 ,是一个数据容器,张量是矩阵向任意维度的推广

注意,张量的维度(dimension)通常叫作轴(axis), 张量轴的个数也叫作阶(rank)]

标量(scalar):只有一个数字的张量叫标量(也叫标量张量、零维张量、0D 张量)

x = np.array(12)
print(x.ndim) 可以用 ndim 属性来查看一个 Numpy 张量的轴的个数。标量张量有 0 个轴( ndim == 0 )。

向量(vector):数字组成的数组叫作向量(vector)或一维张量(1D 张量)。一维张量只有一个轴。下面是一个 Numpy 向量

np.array([12, 3, 6, 14, 7])
这个向量有 5 个元素,所以被称为 5D 向量。不要把 5D 向量和 5D 张量弄混! 5D 向量只有一个轴,沿着轴有 5 个维度,而 5D 张量有 5 个轴(沿着每个轴可能有任意个维度)

矩阵(matrix):是一个按照长方阵列排列的复数或实数集合,矩阵是二维张量(2D 张量)

np.array([[5, 78, 2, 34, 0], [6, 79, 3, 35, 1], [7, 80, 4, 36, 2]])
向量组成的数组叫作矩阵(matrix)或二维张量(2D 张量)。矩阵有 2 个轴(通常叫作行和列)。你可以将矩阵直观地理解为数字组成的矩形网格。下面是一个 Numpy 矩阵。

3D 张量n 维张量
将多个矩阵组合成一个新的数组,可以得到一个 3D 张量,你可以将其直观地理解为数字组成的立方体。下面是一个 Numpy 的 3D 张量。

np.array([[[5, 78, 2, 34, 0],
           [6, 79, 3, 35, 1],
           [7, 80, 4, 36, 2]],

          [[5, 78, 2, 34, 0],
           [6, 79, 3, 35, 1],
           [7, 80, 4, 36, 2]],

          [[5, 78, 2, 34, 0],
           [6, 79, 3, 35, 1],
           [7, 80, 4, 36, 2]]])

将多个 3D 张量组合成一个数组,可以创建一个 4D 张量,以此类推。深度学习处理的一般是 0D 到 4D 的张量,但处理视频数据时可能会遇到 5D 张量。

张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix)

张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix)

张量属性

张量是由以下三个关键属性来定义的。

  • 轴的个数(阶):例如,3D 张量有 3 个轴,矩阵有 2 个轴。这在 Numpy 等 Python 库中也叫张量的 ndim 。
  • 形状(shape):这是一个整数元组,表示张量沿每个轴的维度大小(元素个数)。例如,前面矩阵示例的形状为 (3, 5) ,3D 张量示例的形状为 (3, 3, 5) 。向量的形状只包含一个元素,比如 (5,) ,而标量的形状为空,即 () 。(张量的形状)
  • 数据类型(dtype):这是张量中所包含数据的类型,例如,张量的类型可以是 float32 、 uint8 、 float64 等。在极少数情况下,你可能会遇到字符( char )张量。注意:Numpy(以及大多数其他库)中不存在字符串张量,因为张量存储在预先分配的连续内存段中,而字符串的长度是可变的,无法用这种方式存储。

data:    Tensor的值;
dtype:    Tensor的数据类型;
shape:    Tensor的形状;
device:    Tensor所在的设备(CPU/GPU);
requires_grad:    是否需要梯度;
grad:    Tensor的梯度;
grad_fn:    创建Tensor的函数;
is_leaf:    是否是叶子节点

张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix)

数据张量

向量数据:2D 张量,形状为 (samples, features)

这是最常见的数据。对于这种数据集,每个数据点都被编码为一个向量,因此一个数据批量就被编码为 2D 张量(即向量组成的数组),其中第一个轴是样本轴,第二个轴是特征轴。
例子:

  • 人口统计数据集,其中包括每个人的年龄、邮编和收入。每个人可以表示为包含 3 个值的向量,而整个数据集包含 100 000 个人,因此可以存储在形状为 (100000, 3) 的 2D张量中。
  • 文本文档数据集,我们将每个文档表示为每个单词在其中出现的次数(字典中包含20 000 个常见单词)。每个文档可以被编码为包含 20 000 个值的向量(每个值对应于字典中每个单词的出现次数),整个数据集包含 500 个文档,因此可以存储在形状为(500, 20000) 的张量中。

时间序列数据或序列数据:3D 张量,形状为 (samples, timesteps, features)

当时间(或序列顺序)对于数据很重要时,应该将数据存储在带有时间轴的 3D 张量中。每个样本可以被编码为一个向量序列(即 2D 张量),因此一个数据批量就被编码为一个 3D 张量(见下图)
张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix)
根据惯例,时间轴始终是第 2 个轴(索引为 1 的轴)。

我们来看几个例子。

  • 股票价格数据集。每一分钟,我们将股票的当前价格、前一分钟的最高价格和前一分钟的最低价格保存下来。因此每分钟被编码为一个 3D 向量,整个交易日被编码为一个形状为 (390, 3) 的 2D 张量(一个交易日有 390 分钟),而 250 天的数据则可以保存在一个形状为 (250, 390, 3) 的 3D 张量中。这里每个样本是一天的股票数据。
  • 推文数据集。我们将每条推文编码为 280 个字符组成的序列,而每个字符又来自于 128个字符组成的字母表。在这种情况下,每个字符可以被编码为大小为 128 的二进制向量(只有在该字符对应的索引位置取值为 1,其他元素都为 0)。那么每条推文可以被编码为一个形状为 (280, 128) 的 2D 张量,而包含 100 万条推文的数据集则可以存储在一个形状为 (1000000, 280, 128) 的张量中。

图像:3D 张量 形状为 (height,width,channels)

图像通常具有三个维度:高度、宽度和通道。通常通道为3=R、G、B
张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix)

图像:4D张量,形状为 (samples, height, width, channels) 或 (samples, channels,height, width) 。

图像通常具有三个维度:高度、宽度和颜色深度。虽然灰度图像(比如 MNIST 数字图像)只有一个颜色通道,因此可以保存在 2D 张量中,但按照惯例,图像张量始终都是 3D 张量,灰度图像的彩色通道只有一维。因此,如果图像大小为 256×256,那么 128 张灰度图像组成的批量可以保存在一个形状为 (128, 256, 256, 1) 的张量中,而 128 张彩色图像组成的批量则可以保存在一个形状为 (128, 256, 256, 3) 的张量中。
图像张量的形状有两种约定:通道在后(channels-last)的约定(在 TensorFlow 中使用)和通道在前(channels-first)的约定(在 Theano 中使用)。Google 的 TensorFlow 机器学习框架将颜色深度轴放在最后: (samples, height, width, color_depth) 。与此相反,Theano将图像深度轴放在批量轴之后: (samples, color_depth, height, width) 。如果采用 Theano 约定,前面的两个例子将变成 (128, 1, 256, 256) 和 (128, 3, 256, 256) 。Keras 框架同时支持这两种格式。

如下图所示是一张普通的水果图片,按照RGB三原色表示,其可以拆分为红色、绿色和蓝色的三张灰度图片,如果将这种表示方法用张量的形式写出来,就是图中最下方的那张表格
张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix)
张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix)
图中只显示了前5行、320列的数据,每个方格代表一个像素点,其中的数据[1.0, 1.0, 1.0]即为颜色。假设用[1.0, 0, 0]表示红色,[0, 1.0, 0]表示绿色,[0, 0, 1.0]表示蓝色,那么如图所示,前面5行的数据则全是白色

用四阶张量表示一个包含多张图片的数据集,其中的四个维度分别是:图片在数据集中的编号,图片高度、宽度,以及色彩数据。

视频:5D张量,形状为 (samples, frames, height, width, channels) 或 (samples,frames, channels, height, width)

视频数据是现实生活中需要用到 5D 张量的少数数据类型之一。视频可以看作一系列帧,每一帧都是一张彩色图像。由于每一帧都可以保存在一个形状为 (height, width, color_depth) 的 3D 张量中,因此一系列帧可以保存在一个形状为 (frames, height, width,color_depth) 的 4D 张量中,而不同视频组成的批量则可以保存在一个 5D 张量中,其形状为(samples, frames, height, width, color_depth) 。

举个例子,一个以每秒 4 帧采样的 60 秒 YouTube 视频片段,视频尺寸为 144×256,这个视频共有 240 帧。4 个这样的视频片段组成的批量将保存在形状为 (4, 240, 144, 256, 3)的张量中。总共有 106 168 320 个值!如果张量的数据类型( dtype )是 float32 ,每个值都是32 位,那么这个张量共有 405MB。好大!你在现实生活中遇到的视频要小得多,因为它们不以float32 格式存储,而且通常被大大压缩,比如 MPEG 格式。

张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix)
张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix)
张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix)文章来源地址https://www.toymoban.com/news/detail-438304.html

到了这里,关于张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习标量、向量、矩阵、张量之间的区别与联系

    前言 深度学习 的表现之所以能够超过传统的机器学习算法离不开神经网络,然而神经网络最基本的数据结构就是 向量 和 矩阵 , 神经网络 的输入是向量,然后通过每个矩阵对向量进行线性变换,再经过激活函数的非线性变换,通过层层计算最终使得 损失函数的最小化 ,完

    2024年02月16日
    浏览(34)
  • 线性代数的学习和整理3:标量,向量和张量的定义和对比

    目录 1 标量 scalar 2 向量 /矢量 vector 2.1 什么是向量(直观) 2.2 什么是向量(严格定义) 2.3 向量如何表示?在向量空间的表示方法 3 矩阵(matrix) 3.1 矩阵的定义 3.2 矩阵和向量的关系 3.3  方阵 4 ​张量(tensor):向量,矩阵都可以看成张量 4.1 张量的定义 4.2 更多维度的张量,举

    2024年02月04日
    浏览(53)
  • 【易混区分】 tensor张量 Numpy张量的各种矩阵乘法、点积的函数对比 (dot, multiply,*,@matmul)

    又称为数量积、标量积(scalar product)或者内积(inner product) 它是指实数域中的两个向量运算得到一个实数值标量的二元运算。也就是对应元素的位置相乘 举例: 对于向量 a = ( x 1 , y 1 ) 和 b = ( x 2 , y 2 ) ,他们的点积就是 a ⋅ b = x 1 x 2 + y 1 y 2 a=(x_1,y_1)和b=(x_2,y_2),他们的点

    2024年01月25日
    浏览(45)
  • 导向矢量矩阵(steering vector matrix)

    在阵列信号处理中,导向矢量矩阵(steering vector matrix)是描述阵列接收信号和信号源之间关系的重要工具。它用于计算不同到达角度(Direction of Arrival,DOA)下的阵列响应。 导向矢量矩阵是一个矩阵,其每一列代表一个特定的到达角度,而每一行代表阵列中的一个阵元。假设

    2024年02月16日
    浏览(77)
  • 列表、张量、向量和矩阵的关系

    在数学和编程中,列表、张量、向量和矩阵之间有一定的关系。这些概念在不同领域和语境中有略微不同的定义和用法,以下是它们之间的一般关系: 列表(List): 列表是编程语言中的一种数据结构,用于存储多个元素。列表中的元素可以是任意数据类型,包括数字、字符

    2024年02月15日
    浏览(65)
  • 深度学习中标量,向量,矩阵和张量

    1.标量(Scalar) 只有大小没有方向,可用实数表示的一个量 2.向量(Vector) 可以表示大小和方向的量 3.矩阵(Matrix) m行n列,矩阵中的元素可以是数字也可以是符号,在深度学习中一般是二维数组 4.张量(Tensor) 用来表示一些向量、标量和其他张量之间的线性关系的多线性函数,这些线

    2024年02月15日
    浏览(42)
  • 将图结构转换矩阵数据转换为PyTorch支持的张量类型时,出现错误AttributeError ‘Tensor‘ object has no attribute ‘todense‘

    将图结构转换矩阵数据转换为PyTorch支持的张量类型时,出现错误AttributeError: ‘Tensor’ object has no attribute ‘todense’ 实例来源于《PyTorch深度学习和图神经网络 卷1》实例26:用图卷积神经网络为论文分类 出错部分p284页 原代码: 错误提示: ​ 找了一圈没有一样的解决方案,但

    2024年02月13日
    浏览(42)
  • Elasticsearch:dense vector 数据类型及标量量化

    密集向量(dense_vector)字段类型存储数值的密集向量。 密集向量场主要用于 k 最近邻 (kNN) 搜索。 dense_vector 类型不支持聚合或排序。 默认情况下,你可以基于 element_type 添加一个 dend_vector 字段作为 float 数值数组: 注意 :与大多数其他数据类型不同,密集向量始终是单值。

    2024年03月23日
    浏览(48)
  • PyTorch核心--tensor 张量 !!

    文章目录 前言 张量的概念 1. 张量的定义 2. 张量的属性 3. 张量的形状 张量的原理 1. 存储(storage) 2. 形状(shape) 3. 步幅(stride) 张量的操作 1. 数学运算 2. 逻辑运算 3. 索引和切片 4. 形状操作 5. 广播 总结 在PyTorch中,张量是核心数据结构,它是一个多维数组,类似Numpy中

    2024年01月23日
    浏览(41)
  • 百度飞桨(PaddlePaddle)- 张量(Tensor)

    张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix) 飞桨 使用张量(Tensor) 来表示神经网络中传递的数据 ,Tensor 可以理解为多维数组,类似于 Numpy 数组(ndarray) 的概念。与 Numpy 数组相比,Tensor 除了支持运行在 CPU 上,还支持运行在 GPU 及各种 AI 芯片上,以实现

    2024年02月03日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包