STM-32:串口收发数据包—串口收发HEX数据包/串口收发文本数据包

这篇具有很好参考价值的文章主要介绍了STM-32:串口收发数据包—串口收发HEX数据包/串口收发文本数据包。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、发送HEX数据包

1.1固定包长,含包头包尾(包尾不是必须的)

STM-32:串口收发数据包—串口收发HEX数据包/串口收发文本数据包

1.2可变包长,含包头包尾

STM-32:串口收发数据包—串口收发HEX数据包/串口收发文本数据包
1、包头包尾和数据载荷重复的问题,传输的数据本身是FF和FE,可能引起误判
解决:限制载荷数据的范围,限幅(例如只发送0~100)
如果无法避免数据与包头包尾重复,则尽量使用固定长度的数据包
增加包头包尾的数量,尽量是其呈现出载荷数据出现不了的状态
2、包头包尾并不是全部都需要的,例如可以只要一个包头
3、固定包长和可变包长的选择问题
(1)对HEX来说,若载荷出现和包头包尾重复的情况,最好选择固定包长,避免接收错误
(2)若不重复,可以选择可变包长
4、各种数据转化为数据流的问题
数据包都是一个字节一个字节组成的,若想发送16位整型数据、32位整型数据,float、double、甚至是结构体(其内部都是由一个字节一个字节组成的),只需要用一个uint8_t的指针指向它,把数据当作字节数组发送即可

二、接收HEX数据包

STM-32:串口收发数据包—串口收发HEX数据包/串口收发文本数据包
每收到一个字节,函数都会进入一次中断,在中断函数中,可以拿到一个字节,但拿到字节之后,就得退出中断,故每拿到一个数据,都是一个独立的过程,而对数据包来说,有数据、包头、包尾三种状态,根据状态不同处理也不同。

三、发送文本数据包

3.1固定包长,含包头包尾

STM-32:串口收发数据包—串口收发HEX数据包/串口收发文本数据包

3.2可变包长,含包头包尾

STM-32:串口收发数据包—串口收发HEX数据包/串口收发文本数据包

四、接收文本数据包

STM-32:串口收发数据包—串口收发HEX数据包/串口收发文本数据包

五、HEX数据包和文本数据包的比较

(1)在hex数据包中,数据都是以原始的字节数据本身呈现的

(2)在文本数据包中,每个字节就经过一层编码和译码,最终表现出文本格式(文本背后还是一个字节的HEX数据)

(3)hex数据包:传输直接、解析数据简单,适合一些模块发送原始的数据,比如一些使用串口通信的陀螺仪、温湿度传感器,但是灵活性不足、载荷容易和包头包尾重复

(4)文本数据包:数据直观易理解、灵活,适合一些输入指令进行人机交互,但解析效率低.

(5)发送100,hex直接发送一个字节100,而文本发送三个字节’1’,‘0’.‘0’,收到之后还要把字符转换程数据,才能得到100。

六、程序用例

6.1串口收发HEX数据包

6.1.1接线图

STM-32:串口收发数据包—串口收发HEX数据包/串口收发文本数据包

6.1.2程序代码

Serial.c

#include "stm32f10x.h"                  // Device header
#include <stdio.h>
#include <stdarg.h>

uint8_t Serial_TxPacket[4];				//FF 01 02 03 04 FE
uint8_t Serial_RxPacket[4];
uint8_t Serial_RxFlag;

void Serial_Init(void)
{
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
	
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	USART_InitTypeDef USART_InitStructure;
	USART_InitStructure.USART_BaudRate = 9600;
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
	USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;
	USART_InitStructure.USART_Parity = USART_Parity_No;
	USART_InitStructure.USART_StopBits = USART_StopBits_1;
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;
	USART_Init(USART1, &USART_InitStructure);
	
	USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
	
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
	
	NVIC_InitTypeDef NVIC_InitStructure;
	NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
	NVIC_Init(&NVIC_InitStructure);
	
	USART_Cmd(USART1, ENABLE);
}

void Serial_SendByte(uint8_t Byte)
{
	USART_SendData(USART1, Byte);
	while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
}

void Serial_SendArray(uint8_t *Array, uint16_t Length)
{
	uint16_t i;
	for (i = 0; i < Length; i ++)
	{
		Serial_SendByte(Array[i]);
	}
}

void Serial_SendString(char *String)
{
	uint8_t i;
	for (i = 0; String[i] != '\0'; i ++)
	{
		Serial_SendByte(String[i]);
	}
}

uint32_t Serial_Pow(uint32_t X, uint32_t Y)
{
	uint32_t Result = 1;
	while (Y --)
	{
		Result *= X;
	}
	return Result;
}

void Serial_SendNumber(uint32_t Number, uint8_t Length)
{
	uint8_t i;
	for (i = 0; i < Length; i ++)
	{
		Serial_SendByte(Number / Serial_Pow(10, Length - i - 1) % 10 + '0');
	}
}

int fputc(int ch, FILE *f)
{
	Serial_SendByte(ch);
	return ch;
}

void Serial_Printf(char *format, ...)
{
	char String[100];
	va_list arg;
	va_start(arg, format);
	vsprintf(String, format, arg);
	va_end(arg);
	Serial_SendString(String);
}


void Serial_SendPacket(void)//发送数据包
{
	Serial_SendByte(0xFF);//添加包头
	Serial_SendArray(Serial_TxPacket, 4);//发送
	Serial_SendByte(0xFE);//添加包尾
}

uint8_t Serial_GetRxFlag(void)
{
	if (Serial_RxFlag == 1)
	{
		Serial_RxFlag = 0;
		return 1;
	}
	return 0;
}

void USART1_IRQHandler(void)
{
	static uint8_t RxState = 0;//接收状态
	static uint8_t pRxPacket = 0;//接收第几个数据
	if (USART_GetITStatus(USART1, USART_IT_RXNE) == SET)
	{
		uint8_t RxData = USART_ReceiveData(USART1);
		
		if (RxState == 0)//等待包头
		{
			if (RxData == 0xFF)//如果包头为0xFF
			{
				RxState = 1;//接收状态置为1接收数据
				pRxPacket = 0;
			}
		}
		else if (RxState == 1)//接收状态为1接收数据
		{
			Serial_RxPacket[pRxPacket] = RxData;//接收数据
			pRxPacket ++;//接收数据个数+1
			if (pRxPacket >= 4)//如果接收数据够四个
			{
				RxState = 2;//置接收状态为2等待包尾
			}
		}
		else if (RxState == 2)//接收状态为2
		{
			if (RxData == 0xFE)//包尾为0xFE
			{
				RxState = 0;//置接收状态为等待包头
				Serial_RxFlag = 1;//接收标志位置1可以接收
			}
		}
		
		USART_ClearITPendingBit(USART1, USART_IT_RXNE);//标志位,如果读取了DR就会自动清零,如果没读取DR,就需要手动清零。
	}
}

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Serial.h"
#include "Key.h"

uint8_t KeyNum;

int main(void)
{
	OLED_Init();
	Key_Init();
	Serial_Init();
	
	OLED_ShowString(1, 1, "TxPacket");
	OLED_ShowString(3, 1, "RxPacket");
	
	Serial_TxPacket[0] = 0x01;
	Serial_TxPacket[1] = 0x02;
	Serial_TxPacket[2] = 0x03;
	Serial_TxPacket[3] = 0x04;
	
	while (1)
	{
		KeyNum = Key_GetNum();
		if (KeyNum == 1)
		{
			Serial_TxPacket[0] ++;
			Serial_TxPacket[1] ++;
			Serial_TxPacket[2] ++;
			Serial_TxPacket[3] ++;
			
			Serial_SendPacket();
			
			OLED_ShowHexNum(2, 1, Serial_TxPacket[0], 2);
			OLED_ShowHexNum(2, 4, Serial_TxPacket[1], 2);
			OLED_ShowHexNum(2, 7, Serial_TxPacket[2], 2);
			OLED_ShowHexNum(2, 10, Serial_TxPacket[3], 2);
		}
		
		if (Serial_GetRxFlag() == 1)
		{
			OLED_ShowHexNum(4, 1, Serial_RxPacket[0], 2);
			OLED_ShowHexNum(4, 4, Serial_RxPacket[1], 2);
			OLED_ShowHexNum(4, 7, Serial_RxPacket[2], 2);
			OLED_ShowHexNum(4, 10, Serial_RxPacket[3], 2);
		}
	}
}

6.2串口收发文本数据包

6.21.1接线图

STM-32:串口收发数据包—串口收发HEX数据包/串口收发文本数据包

6.2.2程序代码

Serial.c

#include "stm32f10x.h"                  // Device header
#include <stdio.h>
#include <stdarg.h>

char Serial_RxPacket[100];				//"@MSG\r\n"
uint8_t Serial_RxFlag;

void Serial_Init(void)
{
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
	
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	USART_InitTypeDef USART_InitStructure;
	USART_InitStructure.USART_BaudRate = 9600;
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
	USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;
	USART_InitStructure.USART_Parity = USART_Parity_No;
	USART_InitStructure.USART_StopBits = USART_StopBits_1;
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;
	USART_Init(USART1, &USART_InitStructure);
	
	USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
	
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
	
	NVIC_InitTypeDef NVIC_InitStructure;
	NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
	NVIC_Init(&NVIC_InitStructure);
	
	USART_Cmd(USART1, ENABLE);
}

void Serial_SendByte(uint8_t Byte)
{
	USART_SendData(USART1, Byte);
	while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
}

void Serial_SendArray(uint8_t *Array, uint16_t Length)
{
	uint16_t i;
	for (i = 0; i < Length; i ++)
	{
		Serial_SendByte(Array[i]);
	}
}

void Serial_SendString(char *String)
{
	uint8_t i;
	for (i = 0; String[i] != '\0'; i ++)
	{
		Serial_SendByte(String[i]);
	}
}

uint32_t Serial_Pow(uint32_t X, uint32_t Y)
{
	uint32_t Result = 1;
	while (Y --)
	{
		Result *= X;
	}
	return Result;
}

void Serial_SendNumber(uint32_t Number, uint8_t Length)
{
	uint8_t i;
	for (i = 0; i < Length; i ++)
	{
		Serial_SendByte(Number / Serial_Pow(10, Length - i - 1) % 10 + '0');
	}
}

int fputc(int ch, FILE *f)
{
	Serial_SendByte(ch);
	return ch;
}

void Serial_Printf(char *format, ...)
{
	char String[100];
	va_list arg;
	va_start(arg, format);
	vsprintf(String, format, arg);
	va_end(arg);
	Serial_SendString(String);
}

void USART1_IRQHandler(void)
{
	static uint8_t RxState = 0;//接收状态
	static uint8_t pRxPacket = 0;//接收第几个数据
	if (USART_GetITStatus(USART1, USART_IT_RXNE) == SET)
	{
		uint8_t RxData = USART_ReceiveData(USART1);
		
		if (RxState == 0)//接收状态为为0,等待包头
		{
			if (RxData == '@' && Serial_RxFlag == 0)//包头为@
			{
				RxState = 1;//置接收状态为1
				pRxPacket = 0;//结束数据位清零
			}
		}
		else if (RxState == 1)//如果状态为1
		{
			if (RxData == '\r')//如果接收数据位\r
			{
				RxState = 2;//置接收状态为2,等待包尾
			}
			else
			{
				Serial_RxPacket[pRxPacket] = RxData;//如果不是\r,接收数据
				pRxPacket ++;
			}
		}
		else if (RxState == 2)//置接收状态为2
		{
			if (RxData == '\n')//结束标志位
			{
				RxState = 0;
				Serial_RxPacket[pRxPacket] = '\0';//结束标志位
				Serial_RxFlag = 1;
			}
		}
		
		USART_ClearITPendingBit(USART1, USART_IT_RXNE);
	}
}

main.c文章来源地址https://www.toymoban.com/news/detail-438446.html

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Serial.h"
#include "LED.h"
#include "string.h"

int main(void)
{
	OLED_Init();
	LED_Init();
	Serial_Init();
	
	OLED_ShowString(1, 1, "TxPacket");
	OLED_ShowString(3, 1, "RxPacket");
	
	while (1)
	{
		if (Serial_RxFlag == 1)
		{
			OLED_ShowString(4, 1, "                ");
			OLED_ShowString(4, 1, Serial_RxPacket);
			
			if (strcmp(Serial_RxPacket, "LED_ON") == 0)
			{
				LED1_ON();
				Serial_SendString("LED_ON_OK\r\n");
				OLED_ShowString(2, 1, "                ");
				OLED_ShowString(2, 1, "LED_ON_OK");
			}
			else if (strcmp(Serial_RxPacket, "LED_OFF") == 0)
			{
				LED1_OFF();
				Serial_SendString("LED_OFF_OK\r\n");
				OLED_ShowString(2, 1, "                ");
				OLED_ShowString(2, 1, "LED_OFF_OK");
			}
			else
			{
				Serial_SendString("ERROR_COMMAND\r\n");
				OLED_ShowString(2, 1, "                ");
				OLED_ShowString(2, 1, "ERROR_COMMAND");
			}
			
			Serial_RxFlag = 0;
		}
	}
}

到了这里,关于STM-32:串口收发数据包—串口收发HEX数据包/串口收发文本数据包的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • stm32和python实现DMA+串口数据收发

    1-0 串口配置 1-1 DMA发送模式配置 1-2 通过DMA传输数据到USART1的发送寄存器 1-3 串口数据发送 将usart1_dma_tx_data()函数放在main函数中或者中断处理函数中即可,如下所示: 2-1 DMA接收模式配置 2-2 串口结束中断 2-3 对串口接收的数据进行处理 3 完整程序

    2024年02月14日
    浏览(40)
  • 【STM32笔记】STM32的串口数据收发基础(四)(USART DMA模式)

         在STM32中编写串口通信数据收发有三种方式: 轮询模式 (阻塞方式), 中断模式 (非阻塞方式)以及 DMA模式 。      打开STM32CubeMX,前部分配置流程如串口数据收发基础(三)节里一样。配置好USART1的基本参数,开启定时器中断后,接下来就要开启USART1的DMA。

    2024年02月03日
    浏览(38)
  • 【STM32】STM32F103C8T6串口通信,实现3个串口收发数据

    串口通信(Serial Communications)实现单片机与电脑或者其它外设进行通信,通信时只需两根线(TX,RX)就可以实现数据传输。STM32f103有三个串口,分别为串口1(RX PA10, TX PA 9),串口2(RX PA3,TX PA2),串口3(RX PB11,TX PB10)。 以下代码是配置三个串口: usart.c usart.h main.c 注意,

    2024年02月12日
    浏览(49)
  • 在STM32中使用5个串口收发数据的问题

    之前碰巧有个项目需要多个串口,用的是ST自带的5个串口没有用扩展芯片 1.MCU型号:STM32F103VET6 2.标准库 1.5个中断同时开启接收数据,即使设置了优先级,还是会出现卡死现象 2.5个中断开启时,printf 重定义如何兼容5个串口 3.如何将5个串口实现通用配置,兼容STF10XXX系列 4.在单片机中

    2024年02月21日
    浏览(41)
  • stm32使用HAL库配置串口中断收发数据(保姆级教程)

    最近在学习使用hal库,之前都是用标准库来写32代码,所以发个帖子记录一下学习过程,同时也希望能帮助到一些也在学习HAL库的同学。 接下来进入正题 串口中断是指当单片机收到一个串口数据时,单片机会产生一个中断信号,通知处理器中断服务程序去处理这个接收到的数

    2024年02月07日
    浏览(40)
  • HAL库STM32CUBEMX学习记录(一)——USART(串口中断收发数据)

    一、首先使用STM32CUBEMX新建一个工程 二、打开工程文件 1.在usart.c中添加以下代码  2.然后在最后面加入中断回调函数 3.在usart.h文件中加入  4.新建一个cmd.c文件,创建命令check函数 5.在mian函数中的while(1)循环中调用USART1_Check(USART_RX_BUF)函数 6.最后串口初始化函数后打开串口中

    2024年02月16日
    浏览(42)
  • STM-32:USART串口协议、串口外设—数据发送/数据发送+接收

    通信的目的:将一个设备的数据传送到另一个设备,扩展硬件系统。比如STM32芯片里面集成了很多功能模块,如定时器计数、PWM输出、AD采集等等,这些都是芯片内部的电路,它们的配置寄存器、数据寄存器都在芯片里面,操作简单,直接读写就行。但是有些功能STM32内部没有

    2024年02月04日
    浏览(61)
  • STM32F407普通IO口模拟串口实现不定长数据收发

    因为项目中用到的串口比较多,STM32F407VET6自带的串口不够用了,所以只能考虑用模拟串口来实现功能。普通的IO口来模拟串口需要先了解串口的时序图,需要用到两个IO引脚即收发引脚,两个定时器,一个用于发送延时使用,一个用于产生中断接收数据。代码的初始化主要用

    2024年02月07日
    浏览(45)
  • 最详细STM32,cubeMX串口发送,接收数据

    这篇文章将详细介绍 串口 发送数据,接受数据。 实验开发板:STM32F103C8T6。 所需软件:keil5 , cubeMX 。 实验目的:了解 串口的基础知识,掌握串口如何发送,接收数据 。 实验:串口发送数据点亮 led。 如果想了解串口的基础知识可以参考我之前的文章: STM32Cube串口USART发送

    2024年02月04日
    浏览(68)
  • STM32实现三个串口同时开启发送接收数据

            实现STM32开通三个串口,每个串口都可以实现接收和发送数据。          编程时,严禁在中断函数中写入发送串口数据代码,否则会出错,具体原因不清楚(有大佬知道的话帮我指出),可能原因是DR寄存器冲突导致。         RX,TX连接到A9,A10使用串口1,使

    2024年04月13日
    浏览(73)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包