AI天后,在线飙歌,人工智能AI孙燕姿模型应用实践,复刻《遥远的歌》,原唱晴子(Python3.10)

这篇具有很好参考价值的文章主要介绍了AI天后,在线飙歌,人工智能AI孙燕姿模型应用实践,复刻《遥远的歌》,原唱晴子(Python3.10)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

忽如一夜春风来,亚洲天后孙燕姿独特而柔美的音色再度响彻华语乐坛,只不过这一次,不是因为她出了新专辑,而是人工智能AI技术对于孙燕姿音色的完美复刻,以大江灌浪之势对华语歌坛诸多经典作品进行了翻唱,还原度令人咋舌,如何做到的?

本次我们借助基于Python3.10的开源库so-vits-svc,让亚洲天后孙燕姿帮我们免费演唱喜欢的歌曲,实现点歌自由。

so-vits-svc是基于VITS的开源项目,VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)是一种结合变分推理(variational inference)、标准化流(normalizing flows)和对抗训练的高表现力语音合成模型。

VITS通过隐变量而非频谱串联起来语音合成中的声学模型和声码器,在隐变量上进行随机建模并利用随机时长预测器,提高了合成语音的多样性,输入同样的文本,能够合成不同声调和韵律的语音。

环境配置

首先确保本机已经安装好Python3.10的开发环境,随后使用Git命令克隆项目:

git clone https://github.com/svc-develop-team/so-vits-svc.git

随后进入项目的目录:

cd so-vits-svc

接着安装依赖,如果是Linux或者Mac系统,运行命令:

pip install -r requirements.txt

如果是Windows用户,需要使用Win系统专用的依赖文件:

pip install -r requirements_win.txt

依赖库安装成功之后,在项目的根目录运行命令,启动服务:

python webUI.py

程序返回:

PS D:\so-vits-svc> python .\webUI.py  
DEBUG:charset_normalizer:Encoding detection: ascii is most likely the one.  
C:\Users\zcxey\AppData\Roaming\Python\Python310\site-packages\gradio\deprecation.py:43: UserWarning: You have unused kwarg parameters in UploadButton, please remove them: {'variant': 'primary'}  
  warnings.warn(  
DEBUG:asyncio:Using proactor: IocpProactor  
Running on local URL:  http://127.0.0.1:7860  
  
To create a public link, set `share=True` in `launch()`.

说明服务已经正常启动了,这里so-vits-svc会在后台运行一个基于Flask框架的web服务,端口号是7860,此时访问本地的网址:127.0.0.1:7860:

此时,我们就可以加载模型,模型训练先按下不表,这里先使用已经训练好的孙燕姿音色模型:

链接:https://pan.baidu.com/s/1RwgRe6s4HCA2eNI5sxHZ9A?pwd=7b4a   
提取码:7b4a

下载模型文件之后,将模型文件放入logs/44k目录:

D:\so-vits-svc\logs\44k>dir  
 驱动器 D 中的卷是 新加卷  
 卷的序列号是 9824-5798  
  
 D:\so-vits-svc\logs\44k 的目录  
  
2023/05/10  12:31    <DIR>          .  
2023/05/10  11:49    <DIR>          ..  
2023/04/08  15:22       542,178,141 G_27200.pth  
2023/04/08  15:54        15,433,721 kmeans_10000.pt  
2023/05/10  11:49                 0 put_pretrained_model_here  
               3 个文件    557,611,862 字节  
               2 个目录 475,872,493,568 可用字节  
  
D:\so-vits-svc\logs\44k>

接着将模型的配置文件config.js放入configs目录:

D:\so-vits-svc\configs>dir  
 驱动器 D 中的卷是 新加卷  
 卷的序列号是 9824-5798  
  
 D:\so-vits-svc\configs 的目录  
  
2023/05/10  11:49    <DIR>          .  
2023/05/10  12:23    <DIR>          ..  
2023/04/08  12:33             2,118 config.json  
               1 个文件          2,118 字节  
               2 个目录 475,872,493,568 可用字节  
  
D:\so-vits-svc\configs>

随后,在页面中点击加载模型即可,这里环境就配置好了。

原始歌曲处理(人声和伴奏分离)

如果想要使用孙燕姿的模型进行推理,让孙燕姿同学唱别的歌手的歌,首先需要一段已经准备好的声音范本,然后使用模型把原来的音色换成孙燕姿模型训练好的音色,有些类似Stable-Diffusion的图像风格迁移,只不过是将绘画风格替换为音色和音准。

这里我们使用晴子的《遥远的歌》,这首歌曲调悠扬,如诉如泣,和孙燕姿婉转的音色正好匹配。好吧,其实是因为这首歌比较简单,方便新手练习。

需要注意的是,模型推理过程中,需要的歌曲样本不应该包含伴奏,因为伴奏属于“噪音”,会影响模型的推理效果,因为我们替换的是歌手的“声音”,并非伴奏。

这里我们选择使用开源库Spleeter来对原歌曲进行人声和伴奏分离,首先安装spleeter:

pip3 install spleeter --user

接着运行命令,对《遥远的歌》进行分离操作:

spleeter separate -o d:/output/ -p spleeter:2stems d:/遥远的歌.mp3

这里-o代表输出目录,-p代表选择的分离模型,最后是要分离的素材。

首次运行会比较慢,因为spleeter会下载预训练模型,体积在1.73g左右,运行完毕后,会在输出目录生成分离后的音轨文件:

C:\Users\zcxey\Downloads\test>dir  
 驱动器 C 中的卷是 Windows  
 卷的序列号是 5607-6354  
  
 C:\Users\zcxey\Downloads\test 的目录  
  
2023/05/09  13:17    <DIR>          .  
2023/05/10  20:57    <DIR>          ..  
2023/05/09  13:17        26,989,322 accompaniment.wav  
2023/05/09  13:17        26,989,322 vocals.wav  
               2 个文件     53,978,644 字节  
               2 个目录 182,549,413,888 可用字节

其中vocals.wav为晴子的清唱声音,而accompaniment.wav则为伴奏。

关于spleeter更多的操作,请移步至:人工智能AI库Spleeter免费人声和背景音乐分离实践(Python3.10) , 这里不再赘述。

至此,原始歌曲就处理好了。

歌曲推理

此时,将晴子的清唱声音vocals.wav文件添加到页面中:

接着就是参数的调整:

这里推理歌曲会有两个问题,就是声音沙哑和跑调,二者必居其一。

F0均值滤波(池化)参数开启后可以有效改善沙哑问题,但有概率导致跑调,而降低该值则可以减少跑调的概率,但又会出现声音沙哑的问题。

基本上,推理过程就是在这两个参数之间不断地调整。

所以每一次推理都需要认真的听一下歌曲有什么问题,然后调整参数的值,这里我最终的参数调整结果如上图所示。

推理出来的歌曲同样也是wav格式,此时我们将推理的清唱声音和之前分离出来的伴奏音乐accompaniment.wav进行合并即可,这里推荐使用FFMPEG:

ffmpeg -f concat -i <( for f in *.wav; do echo "file '$(pwd)/$f'"; done ) output.wav

该命令可以把推理的人声wav和背景音乐wav合并为一个output.wav歌曲,也就是我们最终的作品。

结语

藉此,我们就完成了自由点歌让天后演唱的任务,如果后期配上画面和歌词的字幕,不失为一个精美的AI艺术品,在Youtube(B站)搜索关键字:刘悦的技术博客,即可欣赏最终的成品歌曲,欢迎诸君品鉴。文章来源地址https://www.toymoban.com/news/detail-438552.html

到了这里,关于AI天后,在线飙歌,人工智能AI孙燕姿模型应用实践,复刻《遥远的歌》,原唱晴子(Python3.10)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • chat ai人工智能写作(ai人工智能写作神器)

    ChatAI智能写作是一款基于人工智能技术的写作助手,可以帮助用户快速生成高质量的文本内容。它具有以下特点: AI论文,免费大纲,10分钟3万字 👉https://www.aipaperpass.com?pic=mLnw 快速生成文章 :ChatAI智能写作可以根据用户输入的和主题,快速生成符合要求的文章,大大

    2024年03月15日
    浏览(66)
  • 【分享】免费并集多个人工智能于一体的在线使用网站

    哈喽,大家好,我是木易巷~ 今天来给大家分享一个集ChatGPT、GPT4、Claude等人工智能于一体的在线使用网站——Poe。 以下是一个汇集了目前热门人工智能工具的网站,只需使用一个神奇的工具,通过邮箱注册账户,即可免费使用。 主要包含 这个网站收录了许多当下流行的人工

    2024年02月11日
    浏览(49)
  • 人工智能发展简史——未来是属于AI人工智能的。

       目录 人工智能发展简史 第一章:起步期-20世纪50年代及以前

    2024年02月09日
    浏览(67)
  • 【人工智能】Embodied AI 技术解释:具身人工智能

    目录 【人工智能】Embodied AI 技术解释:具身人工智能 What embodied AI is ? How embodied AI works?

    2024年02月08日
    浏览(61)
  • AI人工智能开发的5种最佳人工智能编程语言

    今天的AI程序员应该掌握多种语言,因为他们在跨学科的环境中工作,而不是在孤岛中工作。 虽然当前这一代人更喜欢Python,R,Java,Lisp,Prolog,Julia等 ,但前端开发人员必须了解JavaScript,Python和R的机器学习应用程序。一家知名组织的流程自动化首席开发人员了解R,Java,

    2023年04月16日
    浏览(50)
  • 【人工智能】AI 人工智能技术近十年演变发展历程

    过去十年对于人工智能(AI)领域来说是一段激动人心的多事之秋。对深度学习潜力的适度探索变成了一个领域的爆炸性扩散,现在包括从电子商务中的推荐系统到自动驾驶汽车的对象检测以及可以创建从逼真的图像到连贯文本的所有内容的生成模型。 在本文中,我们将沿着

    2024年02月09日
    浏览(64)
  • 【人工智能】Responsible AI 负责任的人工智能:人工智能安全和隐私的未来 The Future of AI Security and Privacy

      While AI development was mostly in the realm of research, practices such as sharing open datasets, publishing models publicly, and using any compute resources available all helped drive forward the state of the art. AI is now increasingly deployed in production environments in the commercial, healthcare, government, and defense sectors and Intel provides

    2023年04月09日
    浏览(45)
  • 人工智能ai写作系统,ai智能写作机器人

     人工智能AI大数据深度:基于伪原创算法,采用神经网络算法,在超过1535000篇文章中进行自动学习、聚合算法进行人工智能的创建,内容语义不变,媒体阿里、腾讯、百度均于日前在百家号内容创作者盛典上推出人工智能创作支撑平台创作大脑。 智能助手可以为人类创作者

    2024年02月10日
    浏览(67)
  • 【AI人工智能】从技术角度看,我们离超级人工智能还有多远?

    目录 前言 超级人工智能是什么? 一、计算能力 二、算法支持 三

    2024年02月06日
    浏览(52)
  • 人工智能AI简史

    最近学习AI,顺便整理了一份AI人工智能简史,大家参考: 1951年 第一台神经网络机,称为SNARC; 1956年 达特茅斯学院会议,正式确立了人工智能的研究领域; 1966年 MIT发明ELIZA人机心理治疗对话程序,通过和数据库实现心理咨询; 1980年 CMU为DEC设计的XCON专家系统获得巨

    2023年04月18日
    浏览(87)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包