国密:生成SM2秘钥、加解密及加验签

这篇具有很好参考价值的文章主要介绍了国密:生成SM2秘钥、加解密及加验签。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

国密改造已经持续了很长时间了,相信很多从事金融科技类的程序猿都遇到过这个需求。这篇文章就为大家带来笔者对于国密改造的一些经验,主要是代码层面,有兴趣的同学可以研究下国密的算法模型!

注:本文所用到的工具类并非笔者所写!

目录

一、国密简述

二、依赖准备

三、SM2算法应用

1、生成SM2公私钥

工具类

测试Demo

 2、数据加解密


一、国密简述

国密——国家密码局制定的国家密码算法。主要包含SM1、SM2、SM3、SM4几种方式。

SM1:对称加密,且算法不公开,使用硬件加密,本文不做叙述;

SM2:非对称加密,签名以及生成秘钥速度优于RSA,基于ECC算法,运算效率更高,且更安全;

SM3:摘要,国产杂凑算法,生成长度为256比特,优于MD5以及SHA-1算法;

SM4: 无线局域网标准的分组数据算法。对称加密,密钥长度和分组长度均为128位;

注意

生成SM2 公钥是130 位 前面多了04两个标识符,注意区分!

二、依赖准备

国密主要用到下面的包

        <dependency>
            <groupId>org.bouncycastle</groupId>
            <artifactId>bcpkix-jdk15on</artifactId>
            <version>1.57</version>
        </dependency>

一定注意版本。实际项目中笔者发现项目其他子工程用到1.56版本的包,所以选择了低版本。

三、SM2算法应用

1、生成SM2公私钥

工具类

package cn.test.encrypt.utils.sm2;

import cn.test.encrypt.utils.Util;
import org.bouncycastle.crypto.AsymmetricCipherKeyPair;
import org.bouncycastle.crypto.digests.SM3Digest;
import org.bouncycastle.crypto.params.ECPrivateKeyParameters;
import org.bouncycastle.crypto.params.ECPublicKeyParameters;
import org.bouncycastle.math.ec.ECPoint;

import java.math.BigInteger;

public class Cipher {
    private int ct;
    private ECPoint p2;
    private SM3Digest sm3keybase;
    private SM3Digest sm3c3;
    private byte key[];
    private byte keyOff;

    public Cipher()
    {
        this.ct = 1;
        this.key = new byte[32];
        this.keyOff = 0;
    }

    private void Reset()
    {
        this.sm3keybase = new SM3Digest();
        this.sm3c3 = new SM3Digest();

        byte p[] = Util.byteConvert32Bytes(p2.getX().toBigInteger());
        this.sm3keybase.update(p, 0, p.length);
        this.sm3c3.update(p, 0, p.length);

        p = Util.byteConvert32Bytes(p2.getY().toBigInteger());
        this.sm3keybase.update(p, 0, p.length);
        this.ct = 1;
        NextKey();
    }

    private void NextKey()
    {
        SM3Digest sm3keycur = new SM3Digest(this.sm3keybase);
        sm3keycur.update((byte) (ct >> 24 & 0xff));
        sm3keycur.update((byte) (ct >> 16 & 0xff));
        sm3keycur.update((byte) (ct >> 8 & 0xff));
        sm3keycur.update((byte) (ct & 0xff));
        sm3keycur.doFinal(key, 0);
        this.keyOff = 0;
        this.ct++;
    }

    public ECPoint Init_enc(SM2 sm2, ECPoint userKey)
    {
        AsymmetricCipherKeyPair key = sm2.ecc_key_pair_generator.generateKeyPair();
        ECPrivateKeyParameters ecpriv = (ECPrivateKeyParameters) key.getPrivate();
        ECPublicKeyParameters ecpub = (ECPublicKeyParameters) key.getPublic();
        BigInteger k = ecpriv.getD();
        ECPoint c1 = ecpub.getQ();
        this.p2 = userKey.multiply(k);
        Reset();
        return c1;
    }

    public void Encrypt(byte data[])
    {
        this.sm3c3.update(data, 0, data.length);
        for (int i = 0; i < data.length; i++)
        {
            if (keyOff == key.length)
            {
                NextKey();
            }
            data[i] ^= key[keyOff++];
        }
    }

    public void Init_dec(BigInteger userD, ECPoint c1)
    {
        this.p2 = c1.multiply(userD);
        Reset();
    }

    public void Decrypt(byte data[])
    {
        for (int i = 0; i < data.length; i++)
        {
            if (keyOff == key.length)
            {
                NextKey();
            }
            data[i] ^= key[keyOff++];
        }

        this.sm3c3.update(data, 0, data.length);
    }

    public void Dofinal(byte c3[])
    {
        byte p[] = Util.byteConvert32Bytes(p2.getY().toBigInteger());
        this.sm3c3.update(p, 0, p.length);
        this.sm3c3.doFinal(c3, 0);
        Reset();
    }
}
package cn.test.encrypt.utils.sm2;


import org.bouncycastle.crypto.generators.ECKeyPairGenerator;
import org.bouncycastle.crypto.params.ECDomainParameters;
import org.bouncycastle.crypto.params.ECKeyGenerationParameters;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.ec.ECFieldElement.Fp;
import org.bouncycastle.math.ec.ECPoint;

import java.math.BigInteger;
import java.security.SecureRandom;

public class SM2 {

    //国密参数
    public static String[] ecc_param = {
            "FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF",
            "FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC",
            "28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93",
            "FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123",
            "32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7",
            "BC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0"
    };

    public static SM2 Instance()
    {
        return new SM2();
    }

    public final BigInteger ecc_p;
    public final BigInteger ecc_a;
    public final BigInteger ecc_b;
    public final BigInteger ecc_n;
    public final BigInteger ecc_gx;
    public final BigInteger ecc_gy;
    public final ECCurve ecc_curve;
    public final ECPoint ecc_point_g;
    public final ECDomainParameters ecc_bc_spec;
    public final ECKeyPairGenerator ecc_key_pair_generator;
    public final ECFieldElement ecc_gx_fieldelement;
    public final ECFieldElement ecc_gy_fieldelement;

    public SM2()
    {
        this.ecc_p = new BigInteger(ecc_param[0], 16);
        this.ecc_a = new BigInteger(ecc_param[1], 16);
        this.ecc_b = new BigInteger(ecc_param[2], 16);
        this.ecc_n = new BigInteger(ecc_param[3], 16);
        this.ecc_gx = new BigInteger(ecc_param[4], 16);
        this.ecc_gy = new BigInteger(ecc_param[5], 16);

        this.ecc_gx_fieldelement = new Fp(this.ecc_p, this.ecc_gx);
        this.ecc_gy_fieldelement = new Fp(this.ecc_p, this.ecc_gy);

        this.ecc_curve = new ECCurve.Fp(this.ecc_p, this.ecc_a, this.ecc_b);
        this.ecc_point_g = new ECPoint.Fp(this.ecc_curve, this.ecc_gx_fieldelement, this.ecc_gy_fieldelement);

        this.ecc_bc_spec = new ECDomainParameters(this.ecc_curve, this.ecc_point_g, this.ecc_n);

        ECKeyGenerationParameters ecc_ecgenparam;
        ecc_ecgenparam = new ECKeyGenerationParameters(this.ecc_bc_spec, new SecureRandom());

        this.ecc_key_pair_generator = new ECKeyPairGenerator();
        this.ecc_key_pair_generator.init(ecc_ecgenparam);
    }
}

生成随机秘钥工具类

package cn.test.encrypt.utils.sm2;


import cn.test.encrypt.utils.Util;
import org.bouncycastle.crypto.AsymmetricCipherKeyPair;
import org.bouncycastle.crypto.params.ECPrivateKeyParameters;
import org.bouncycastle.crypto.params.ECPublicKeyParameters;
import org.bouncycastle.math.ec.ECPoint;

import java.io.IOException;
import java.math.BigInteger;

public class SM2EncDecUtils {
    //生成随机秘钥对
    public static SM2KeyVO generateKeyPair(){
        SM2 sm2 = SM2.Instance();
        AsymmetricCipherKeyPair key = null;
        while (true){
            key=sm2.ecc_key_pair_generator.generateKeyPair();
            if(((ECPrivateKeyParameters) key.getPrivate()).getD().toByteArray().length==32){
                break;
            }
        }
        ECPrivateKeyParameters ecpriv = (ECPrivateKeyParameters) key.getPrivate();
        ECPublicKeyParameters ecpub = (ECPublicKeyParameters) key.getPublic();
        BigInteger privateKey = ecpriv.getD();
        ECPoint publicKey = ecpub.getQ();
        SM2KeyVO sm2KeyVO = new SM2KeyVO();
        sm2KeyVO.setPublicKey(publicKey);
        sm2KeyVO.setPrivateKey(privateKey);
        //System.out.println("公钥: " + Util.byteToHex(publicKey.getEncoded()));
        //System.out.println("私钥: " + Util.byteToHex(privateKey.toByteArray()));
        return sm2KeyVO;
    }

    //数据加密
    public static String encrypt(byte[] publicKey, byte[] data) throws IOException
    {
        if (publicKey == null || publicKey.length == 0)
        {
            return null;
        }

        if (data == null || data.length == 0)
        {
            return null;
        }

        byte[] source = new byte[data.length];
        //将数组data复制到source
        System.arraycopy(data, 0, source, 0, data.length);

        Cipher cipher = new Cipher();
        SM2 sm2 = SM2.Instance();//new自建类,, SM2 sm2 = new SM2();
        ECPoint userKey = sm2.ecc_curve.decodePoint(publicKey);

        ECPoint c1 = cipher.Init_enc(sm2, userKey);
        cipher.Encrypt(source);
        byte[] c3 = new byte[32];
        cipher.Dofinal(c3);

     // System.out.println("C1 " + Util.byteToHex(c1.getEncoded()));
     // System.out.println("C2 " + Util.byteToHex(source));
     //System.out.println("C3 " + Util.byteToHex(c3));
        //C1 C2 C3拼装成加密字串
        // C1 | C2 | C3
        //return Util.byteToHex(c1.getEncoded()) + Util.byteToHex(source) + Util.byteToHex(c3);
        // C1 | C3 | C2
        return Util.byteToHex(c1.getEncoded()) + Util.byteToHex(c3) + Util.byteToHex(source);
    }

    //数据解密
    public static byte[] decrypt(byte[] privateKey, byte[] encryptedData) throws IOException
    {
        if (privateKey == null || privateKey.length == 0)
        {
            return null;
        }

        if (encryptedData == null || encryptedData.length == 0)
        {
            return null;
        }
        //加密字节数组转换为十六进制的字符串 长度变为encryptedData.length * 2
        String data = Util.byteToHex(encryptedData);
        /***分解加密字串 C1 | C2 | C3
         * (C1 = C1标志位2位 + C1实体部分128位 = 130)
         * (C3 = C3实体部分64位  = 64)
         * (C2 = encryptedData.length * 2 - C1长度  - C2长度)

        byte[] c1Bytes = Util.hexToByte(data.substring(0,130));
        int c2Len = encryptedData.length - 97;
        byte[] c2 = Util.hexToByte(data.substring(130,130 + 2 * c2Len));
        byte[] c3 = Util.hexToByte(data.substring(130 + 2 * c2Len,194 + 2 * c2Len));
        */
        /***分解加密字串 C1 | C3 | C2
         * (C1 = C1标志位2位 + C1实体部分128位 = 130)
         * (C3 = C3实体部分64位  = 64)
         * (C2 = encryptedData.length * 2 - C1长度  - C2长度)
         */
        byte[] c1Bytes = Util.hexToByte(data.substring(0,130));
        int c2Len = encryptedData.length - 97;
        byte[] c3 = Util.hexToByte(data.substring(130,130 + 64));
        byte[] c2 = Util.hexToByte(data.substring(194,194 + 2 * c2Len));

        SM2 sm2 = SM2.Instance();
        BigInteger userD = new BigInteger(1, privateKey);

        //通过C1实体字节来生成ECPoint
        ECPoint c1 = sm2.ecc_curve.decodePoint(c1Bytes);
        Cipher cipher = new Cipher();
        cipher.Init_dec(userD, c1);
        cipher.Decrypt(c2);
        cipher.Dofinal(c3);

        //返回解密结果
        return c2;
    }

}

SM2曲线算法工具类

package cn.test.encrypt.utils.sm2;

import cn.test.encrypt.utils.Util;
import org.bouncycastle.crypto.AsymmetricCipherKeyPair;
import org.bouncycastle.crypto.digests.SM3Digest;
import org.bouncycastle.crypto.generators.ECKeyPairGenerator;
import org.bouncycastle.crypto.params.ECDomainParameters;
import org.bouncycastle.crypto.params.ECKeyGenerationParameters;
import org.bouncycastle.crypto.params.ECPrivateKeyParameters;
import org.bouncycastle.crypto.params.ECPublicKeyParameters;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.ec.ECFieldElement.Fp;
import org.bouncycastle.math.ec.ECPoint;

import java.math.BigInteger;
import java.security.SecureRandom;


public class SM2Factory {
	/*-----------------------国密算法相关参数begin-----------
	 * ------------------*/
	//A 第一系数
	private static final BigInteger a  = new BigInteger("fffffffeffffffffffffffffffffffffffffffff00000000fffffffffffffffc",16);
	//B 第二系数
	private static final BigInteger b  = new BigInteger("28e9fa9e9d9f5e344d5a9e4bcf6509a7f39789f515ab8f92ddbcbd414d940e93",16);
	//曲线X系数
	private static final BigInteger gx = new BigInteger("32c4ae2c1f1981195f9904466a39c9948fe30bbff2660be1715a4589334c74c7",16);
	//曲线Y系数
	private static final BigInteger gy = new BigInteger("bc3736a2f4f6779c59bdcee36b692153d0a9877cc62a474002df32e52139f0a0",16);
	//生产者顺序系数
	private static final BigInteger n  = new BigInteger("fffffffeffffffffffffffffffffffff7203df6b21c6052b53bbf40939d54123",16);
	//素数
	private static final BigInteger p  = new BigInteger("fffffffeffffffffffffffffffffffffffffffff00000000ffffffffffffffff",16);
	//因子系数 1
	private static final int h  = 1;
	/*-----------------------国密算法相关参数end-----------------------------*/
	//一些必要类
	public final ECFieldElement ecc_gx_fieldelement;
	public final ECFieldElement ecc_gy_fieldelement;
	public final ECCurve ecc_curve;
	public final ECPoint ecc_point_g;
	public final ECDomainParameters ecc_bc_spec;
	public final ECKeyPairGenerator ecc_key_pair_generator;
	/**
	 * 初始化方法
	 * @return
	 */
	public static SM2Factory getInstance(){
		return new SM2Factory();
	}
	public SM2Factory() {

		this.ecc_gx_fieldelement = new Fp(this.p,this.gx);
		this.ecc_gy_fieldelement = new Fp(this.p, this.gy);

		this.ecc_curve = new ECCurve.Fp(this.p, this.a, this.b);

		this.ecc_point_g = new ECPoint.Fp(this.ecc_curve, this.ecc_gx_fieldelement,this.ecc_gy_fieldelement);
		this.ecc_bc_spec = new ECDomainParameters(this.ecc_curve, this.ecc_point_g, this.n);

		ECKeyGenerationParameters ecc_ecgenparam;
		ecc_ecgenparam = new ECKeyGenerationParameters(this.ecc_bc_spec, new SecureRandom());

		this.ecc_key_pair_generator = new ECKeyPairGenerator();
		this.ecc_key_pair_generator.init(ecc_ecgenparam);
	}
	/**
	 * 根据私钥、曲线参数计算Z
	 * @param userId
	 * @param userKey
	 * @return
	 */
	public  byte[] sm2GetZ(byte[] userId, ECPoint userKey){
		SM3Digest sm3 = new SM3Digest();

		int len = userId.length * 8;
		sm3.update((byte) (len >> 8 & 0xFF));
		sm3.update((byte) (len & 0xFF));
		sm3.update(userId, 0, userId.length);

		byte[] p = Util.byteConvert32Bytes(this.a);
		sm3.update(p, 0, p.length);

		p = Util.byteConvert32Bytes(this.b);
		sm3.update(p, 0, p.length);

		p = Util.byteConvert32Bytes(this.gx);
		sm3.update(p, 0, p.length);

		p = Util.byteConvert32Bytes(this.gy);
		sm3.update(p, 0, p.length);

		p = Util.byteConvert32Bytes(userKey.normalize().getXCoord().toBigInteger());
		sm3.update(p, 0, p.length);

		p = Util.byteConvert32Bytes(userKey.normalize().getYCoord().toBigInteger());
		sm3.update(p, 0, p.length);

		byte[] md = new byte[sm3.getDigestSize()];
		sm3.doFinal(md, 0);
		return md;
	}
	/**
	 * 签名相关值计算
	 * @param md
	 * @param userD
	 * @param userKey
	 * @param sm2Result
	 */
	public void sm2Sign(byte[] md, BigInteger userD, ECPoint userKey, SM2Result sm2Result) {
		BigInteger e = new BigInteger(1, md);
		BigInteger k = null;
		ECPoint kp = null;
		BigInteger r = null;
		BigInteger s = null;
		do {
			do {
				// 正式环境
				AsymmetricCipherKeyPair keypair = ecc_key_pair_generator.generateKeyPair();
				ECPrivateKeyParameters ecpriv = (ECPrivateKeyParameters) keypair.getPrivate();
				ECPublicKeyParameters ecpub = (ECPublicKeyParameters) keypair.getPublic();
				k = ecpriv.getD();
				kp = ecpub.getQ();
				//System.out.println("BigInteger:" + k + "\nECPoint:" + kp);

				//System.out.println("计算曲线点X1: "+ kp.getXCoord().toBigInteger().toString(16));
				//System.out.println("计算曲线点Y1: "+ kp.getYCoord().toBigInteger().toString(16));
				//System.out.println("");
				// r
				r = e.add(kp.getXCoord().toBigInteger());
				r = r.mod(this.n);
			} while (r.equals(BigInteger.ZERO) || r.add(k).equals(this.n)||r.toString(16).length()!=64);

			// (1 + dA)~-1
			BigInteger da_1 = userD.add(BigInteger.ONE);
			da_1 = da_1.modInverse(this.n);
			// s
			s = r.multiply(userD);
			s = k.subtract(s).mod(this.n);
			s = da_1.multiply(s).mod(this.n);
		} while (s.equals(BigInteger.ZERO)||(s.toString(16).length()!=64));

		sm2Result.r = r;
		sm2Result.s = s;
	}
	/**
	 * 验签
	 * @param md sm3摘要
	 * @param userKey 根据公钥decode一个ecpoint对象
	 * @param r 没有特殊含义
	 * @param s 没有特殊含义
	 * @param sm2Result 接收参数的对象
	 */
	public void sm2Verify(byte md[], ECPoint userKey, BigInteger r,
                          BigInteger s, SM2Result sm2Result) {
		sm2Result.R = null;
		BigInteger e = new BigInteger(1, md);
		BigInteger t = r.add(s).mod(this.n);
		if (t.equals(BigInteger.ZERO)) {
			return;
		} else {
			ECPoint x1y1 = ecc_point_g.multiply(sm2Result.s);
			//System.out.println("计算曲线点X0: "+ x1y1.normalize().getXCoord().toBigInteger().toString(16));
			//System.out.println("计算曲线点Y0: "+ x1y1.normalize().getYCoord().toBigInteger().toString(16));
			//System.out.println("");

			x1y1 = x1y1.add(userKey.multiply(t));
			//System.out.println("计算曲线点X1: "+ x1y1.normalize().getXCoord().toBigInteger().toString(16));
			//System.out.println("计算曲线点Y1: "+ x1y1.normalize().getYCoord().toBigInteger().toString(16));
			//System.out.println("");
			sm2Result.R = e.add(x1y1.normalize().getXCoord().toBigInteger()).mod(this.n);
			//System.out.println("R: " + sm2Result.R.toString(16));
			return;
		}
	}

}

工具类

package cn.test.encrypt.utils;

import java.math.BigInteger;

public class Util {
    /**
     * 整形转换成网络传输的字节流(字节数组)型数据
     *
     * @param num 一个整型数据
     * @return 4个字节的自己数组
     */
    public static byte[] intToBytes(int num) {
        byte[] bytes = new byte[4];
        bytes[0] = (byte) (0xff & (num >> 0));
        bytes[1] = (byte) (0xff & (num >> 8));
        bytes[2] = (byte) (0xff & (num >> 16));
        bytes[3] = (byte) (0xff & (num >> 24));
        return bytes;
    }

    /**
     * 四个字节的字节数据转换成一个整形数据
     *
     * @param bytes 4个字节的字节数组
     * @return 一个整型数据
     */
    public static int byteToInt(byte[] bytes) {
        int num = 0;
        int temp;
        temp = (0x000000ff & (bytes[0])) << 0;
        num = num | temp;
        temp = (0x000000ff & (bytes[1])) << 8;
        num = num | temp;
        temp = (0x000000ff & (bytes[2])) << 16;
        num = num | temp;
        temp = (0x000000ff & (bytes[3])) << 24;
        num = num | temp;
        return num;
    }

    /**
     * 长整形转换成网络传输的字节流(字节数组)型数据
     *
     * @param num 一个长整型数据
     * @return 4个字节的自己数组
     */
    public static byte[] longToBytes(long num) {
        byte[] bytes = new byte[8];
        for (int i = 0; i < 8; i++) {
            bytes[i] = (byte) (0xff & (num >> (i * 8)));
        }

        return bytes;
    }

    /**
     * 大数字转换字节流(字节数组)型数据
     *
     * @param n
     * @return
     */
    public static byte[] byteConvert32Bytes(BigInteger n) {
        byte tmpd[] = (byte[]) null;
        if (n == null) {
            return null;
        }

        if (n.toByteArray().length == 33) {
            tmpd = new byte[32];
            System.arraycopy(n.toByteArray(), 1, tmpd, 0, 32);
        } else if (n.toByteArray().length == 32) {
            tmpd = n.toByteArray();
        } else {
            tmpd = new byte[32];
            for (int i = 0; i < 32 - n.toByteArray().length; i++) {
                tmpd[i] = 0;
            }
            System.arraycopy(n.toByteArray(), 0, tmpd, 32 - n.toByteArray().length, n.toByteArray().length);
        }
        return tmpd;
    }

    /**
     * 换字节流(字节数组)型数据转大数字
     *
     * @param b
     * @return
     */
    public static BigInteger byteConvertInteger(byte[] b) {
        if (b[0] < 0) {
            byte[] temp = new byte[b.length + 1];
            temp[0] = 0;
            System.arraycopy(b, 0, temp, 1, b.length);
            return new BigInteger(temp);
        }
        return new BigInteger(b);
    }

    /**
     * 根据字节数组获得值(十六进制数字)
     *
     * @param bytes
     * @return
     */
    public static String getHexString(byte[] bytes) {
        return getHexString(bytes, true);
    }

    /**
     * 根据字节数组获得值(十六进制数字)
     *
     * @param bytes
     * @param upperCase
     * @return
     */
    public static String getHexString(byte[] bytes, boolean upperCase) {
        String ret = "";
        for (int i = 0; i < bytes.length; i++) {
            ret += Integer.toString((bytes[i] & 0xff) + 0x100, 16).substring(1);
        }
        return upperCase ? ret.toUpperCase() : ret;
    }

    /**
     * 打印十六进制字符串
     *
     * @param bytes
     */
    public static void printHexString(byte[] bytes) {
        for (int i = 0; i < bytes.length; i++) {
            String hex = Integer.toHexString(bytes[i] & 0xFF);
            if (hex.length() == 1) {
                hex = '0' + hex;
            }
            System.out.print("0x" + hex.toUpperCase() + ",");
        }
        System.out.println("");
    }

    /**
     * Convert hex string to byte[]
     *
     * @param hexString the hex string
     * @return byte[]
     */
    public static byte[] hexStringToBytes(String hexString) {
        if (hexString == null || hexString.equals("")) {
            return null;
        }

        hexString = hexString.toUpperCase();
        int length = hexString.length() / 2;
        char[] hexChars = hexString.toCharArray();
        byte[] d = new byte[length];
        for (int i = 0; i < length; i++) {
            int pos = i * 2;
            d[i] = (byte) (charToByte(hexChars[pos]) << 4 | charToByte(hexChars[pos + 1]));
        }
        return d;
    }

    /**
     * Convert char to byte
     *
     * @param c char
     * @return byte
     */
    public static byte charToByte(char c) {
        return (byte) "0123456789ABCDEF".indexOf(c);
    }

    /**
     * 用于建立十六进制字符的输出的小写字符数组
     */
    private static final char[] DIGITS_LOWER = {'0', '1', '2', '3', '4', '5',
            '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};

    /**
     * 用于建立十六进制字符的输出的大写字符数组
     */
    private static final char[] DIGITS_UPPER = {'0', '1', '2', '3', '4', '5',
            '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'};

    /**
     * 将字节数组转换为十六进制字符数组
     *
     * @param data byte[]
     * @return 十六进制char[]
     */
    public static char[] encodeHex(byte[] data) {
        return encodeHex(data, true);
    }

    /**
     * 将字节数组转换为十六进制字符数组
     *
     * @param data        byte[]
     * @param toLowerCase <code>true</code> 传换成小写格式 , <code>false</code> 传换成大写格式
     * @return 十六进制char[]
     */
    public static char[] encodeHex(byte[] data, boolean toLowerCase) {
        return encodeHex(data, toLowerCase ? DIGITS_LOWER : DIGITS_UPPER);
    }

    /**
     * 将字节数组转换为十六进制字符数组
     *
     * @param data     byte[]
     * @param toDigits 用于控制输出的char[]
     * @return 十六进制char[]
     */
    protected static char[] encodeHex(byte[] data, char[] toDigits) {
        int l = data.length;
        char[] out = new char[l << 1];
        // two characters form the hex value.
        for (int i = 0, j = 0; i < l; i++) {
            out[j++] = toDigits[(0xF0 & data[i]) >>> 4];
            out[j++] = toDigits[0x0F & data[i]];
        }
        return out;
    }

    /**
     * 将字节数组转换为十六进制字符串
     *
     * @param data byte[]
     * @return 十六进制String
     */
    public static String encodeHexString(byte[] data) {
        return encodeHexString(data, true);
    }

    /**
     * 将字节数组转换为十六进制字符串
     *
     * @param data        byte[]
     * @param toLowerCase <code>true</code> 传换成小写格式 , <code>false</code> 传换成大写格式
     * @return 十六进制String
     */
    public static String encodeHexString(byte[] data, boolean toLowerCase) {
        return encodeHexString(data, toLowerCase ? DIGITS_LOWER : DIGITS_UPPER);
    }

    /**
     * 将字节数组转换为十六进制字符串
     *
     * @param data     byte[]
     * @param toDigits 用于控制输出的char[]
     * @return 十六进制String
     */
    protected static String encodeHexString(byte[] data, char[] toDigits) {
        return new String(encodeHex(data, toDigits));
    }

    /**
     * 将十六进制字符数组转换为字节数组
     *
     * @param data 十六进制char[]
     * @return byte[]
     * @throws RuntimeException 如果源十六进制字符数组是一个奇怪的长度,将抛出运行时异常
     */
    public static byte[] decodeHex(char[] data) {
        int len = data.length;

        if ((len & 0x01) != 0) {
            throw new RuntimeException("Odd number of characters.");
        }

        byte[] out = new byte[len >> 1];

        // two characters form the hex value.
        for (int i = 0, j = 0; j < len; i++) {
            int f = toDigit(data[j], j) << 4;
            j++;
            f = f | toDigit(data[j], j);
            j++;
            out[i] = (byte) (f & 0xFF);
        }

        return out;
    }

    /**
     * 将十六进制字符转换成一个整数
     *
     * @param ch    十六进制char
     * @param index 十六进制字符在字符数组中的位置
     * @return 一个整数
     * @throws RuntimeException 当ch不是一个合法的十六进制字符时,抛出运行时异常
     */
    protected static int toDigit(char ch, int index) {
        int digit = Character.digit(ch, 16);
        if (digit == -1) {
            throw new RuntimeException("Illegal hexadecimal character " + ch
                    + " at index " + index);
        }
        return digit;
    }

    /**
     * 数字字符串转ASCII码字符串
     *
     * @param String 字符串
     * @return ASCII字符串
     */
    public static String StringToAsciiString(String content) {
        String result = "";
        int max = content.length();
        for (int i = 0; i < max; i++) {
            char c = content.charAt(i);
            String b = Integer.toHexString(c);
            result = result + b;
        }
        return result;
    }

    /**
     * 十六进制转字符串
     *
     * @param hexString  十六进制字符串
     * @param encodeType 编码类型4:Unicode,2:普通编码
     * @return 字符串
     */
    public static String hexStringToString(String hexString, int encodeType) {
        String result = "";
        int max = hexString.length() / encodeType;
        for (int i = 0; i < max; i++) {
            char c = (char) hexStringToAlgorism(hexString
                    .substring(i * encodeType, (i + 1) * encodeType));
            result += c;
        }
        return result;
    }

    /**
     * 十六进制字符串装十进制
     *
     * @param hex 十六进制字符串
     * @return 十进制数值
     */
    public static int hexStringToAlgorism(String hex) {
        hex = hex.toUpperCase();
        int max = hex.length();
        int result = 0;
        for (int i = max; i > 0; i--) {
            char c = hex.charAt(i - 1);
            int algorism = 0;
            if (c >= '0' && c <= '9') {
                algorism = c - '0';
            } else {
                algorism = c - 55;
            }
            result += Math.pow(16, max - i) * algorism;
        }
        return result;
    }

    /**
     * 十六转二进制
     *
     * @param hex 十六进制字符串
     * @return 二进制字符串
     */
    public static String hexStringToBinary(String hex) {
        hex = hex.toUpperCase();
        String result = "";
        int max = hex.length();
        for (int i = 0; i < max; i++) {
            char c = hex.charAt(i);
            switch (c) {
                case '0':
                    result += "0000";
                    break;
                case '1':
                    result += "0001";
                    break;
                case '2':
                    result += "0010";
                    break;
                case '3':
                    result += "0011";
                    break;
                case '4':
                    result += "0100";
                    break;
                case '5':
                    result += "0101";
                    break;
                case '6':
                    result += "0110";
                    break;
                case '7':
                    result += "0111";
                    break;
                case '8':
                    result += "1000";
                    break;
                case '9':
                    result += "1001";
                    break;
                case 'A':
                    result += "1010";
                    break;
                case 'B':
                    result += "1011";
                    break;
                case 'C':
                    result += "1100";
                    break;
                case 'D':
                    result += "1101";
                    break;
                case 'E':
                    result += "1110";
                    break;
                case 'F':
                    result += "1111";
                    break;
            }
        }
        return result;
    }

    /**
     * ASCII码字符串转数字字符串
     *
     * @param String ASCII字符串
     * @return 字符串
     */
    public static String AsciiStringToString(String content) {
        String result = "";
        int length = content.length() / 2;
        for (int i = 0; i < length; i++) {
            String c = content.substring(i * 2, i * 2 + 2);
            int a = hexStringToAlgorism(c);
            char b = (char) a;
            String d = String.valueOf(b);
            result += d;
        }
        return result;
    }

    /**
     * 将十进制转换为指定长度的十六进制字符串
     *
     * @param algorism  int 十进制数字
     * @param maxLength int 转换后的十六进制字符串长度
     * @return String 转换后的十六进制字符串
     */
    public static String algorismToHexString(int algorism, int maxLength) {
        String result = "";
        result = Integer.toHexString(algorism);

        if (result.length() % 2 == 1) {
            result = "0" + result;
        }
        return patchHexString(result.toUpperCase(), maxLength);
    }

    /**
     * 字节数组转为普通字符串(ASCII对应的字符)
     *
     * @param bytearray byte[]
     * @return String
     */
    public static String byteToString(byte[] bytearray) {
        String result = "";
        char temp;

        int length = bytearray.length;
        for (int i = 0; i < length; i++) {
            temp = (char) bytearray[i];
            result += temp;
        }
        return result;
    }

    /**
     * 二进制字符串转十进制
     *
     * @param binary 二进制字符串
     * @return 十进制数值
     */
    public static int binaryToAlgorism(String binary) {
        int max = binary.length();
        int result = 0;
        for (int i = max; i > 0; i--) {
            char c = binary.charAt(i - 1);
            int algorism = c - '0';
            result += Math.pow(2, max - i) * algorism;
        }
        return result;
    }

    /**
     * 十进制转换为十六进制字符串
     *
     * @param algorism int 十进制的数字
     * @return String 对应的十六进制字符串
     */
    public static String algorismToHEXString(int algorism) {
        String result = "";
        result = Integer.toHexString(algorism);

        if (result.length() % 2 == 1) {
            result = "0" + result;

        }
        result = result.toUpperCase();

        return result;
    }

    /**
     * HEX字符串前补0,主要用于长度位数不足。
     *
     * @param str       String 需要补充长度的十六进制字符串
     * @param maxLength int 补充后十六进制字符串的长度
     * @return 补充结果
     */
    static public String patchHexString(String str, int maxLength) {
        String temp = "";
        for (int i = 0; i < maxLength - str.length(); i++) {
            temp = "0" + temp;
        }
        str = (temp + str).substring(0, maxLength);
        return str;
    }

    /**
     * 将一个字符串转换为int
     *
     * @param s          String 要转换的字符串
     * @param defaultInt int 如果出现异常,默认返回的数字
     * @param radix      int 要转换的字符串是什么进制的,如16 8 10.
     * @return int 转换后的数字
     */
    public static int parseToInt(String s, int defaultInt, int radix) {
        int i = 0;
        try {
            i = Integer.parseInt(s, radix);
        } catch (NumberFormatException ex) {
            i = defaultInt;
        }
        return i;
    }

    /**
     * 将一个十进制形式的数字字符串转换为int
     *
     * @param s          String 要转换的字符串
     * @param defaultInt int 如果出现异常,默认返回的数字
     * @return int 转换后的数字
     */
    public static int parseToInt(String s, int defaultInt) {
        int i = 0;
        try {
            i = Integer.parseInt(s);
        } catch (NumberFormatException ex) {
            i = defaultInt;
        }
        return i;
    }

    /**
     * 十六进制串转化为byte数组
     *
     * @return the array of byte
     */
    public static byte[] hexToByte(String hex)
            throws IllegalArgumentException {
        if (hex.length() % 2 != 0) {
            throw new IllegalArgumentException();
        }
        char[] arr = hex.toCharArray();
        byte[] b = new byte[hex.length() / 2];
        for (int i = 0, j = 0, l = hex.length(); i < l; i++, j++) {
            String swap = "" + arr[i++] + arr[i];
            int byteint = Integer.parseInt(swap, 16) & 0xFF;
            b[j] = new Integer(byteint).byteValue();
        }
        return b;
    }

    /**
     * 字节数组转换为十六进制字符串
     *
     * @param b byte[] 需要转换的字节数组
     * @return String 十六进制字符串
     */
    public static String byteToHex(byte b[]) {
        if (b == null) {
            throw new IllegalArgumentException(
                    "Argument b ( byte array ) is null! ");
        }
        String hs = "";
        String stmp = "";
        for (int n = 0; n < b.length; n++) {
            stmp = Integer.toHexString(b[n] & 0xff);
            if (stmp.length() == 1) {
                hs = hs + "0" + stmp;
            } else {
                hs = hs + stmp;
            }
        }
        return hs.toLowerCase();
        //return hs.toUpperCase();
    }

    public static byte[] subByte(byte[] input, int startIndex, int length) {
        byte[] bt = new byte[length];
        for (int i = 0; i < length; i++) {
            bt[i] = input[i + startIndex];
        }
        return bt;
    }
}

SM2对象

package cn.test.encrypt.utils.sm2;

import cn.test.encrypt.utils.Util;
import cn.test.encrypt.test.SecurityTestAll;
import org.bouncycastle.math.ec.ECPoint;

import java.math.BigInteger;

public class SM2KeyVO {
    BigInteger privateKey ;
    ECPoint publicKey ;

    public BigInteger getPrivateKey() {
        return privateKey;
    }

    public void setPrivateKey(BigInteger privateKey) {
        this.privateKey = privateKey;
    }

    public ECPoint getPublicKey() {
        return publicKey;
    }

    public void setPublicKey(ECPoint publicKey) {
        this.publicKey = publicKey;
    }

    //HardPubKey:3059301306072A8648CE3D020106082A811CCF5501822D03420004+X+Y
    //SoftPubKey:04+X+Y
    public String getPubHexInSoft(){
        return Util.byteToHex(publicKey.getEncoded(true));
        //System.out.println("公钥: " + );
    }
    public String getPubHexInHard(){
        return SecurityTestAll.SM2PubHardKeyHead +Util.byteToHex(publicKey.getEncoded(true));
    }
    public String getPriHexInSoft(){
        return Util.byteToHex(privateKey.toByteArray());
    }
}

测试Demo

 public static void main(String[] args) {
        SM2KeyVO initKeyVO = SM2EncDecUtils.generateKeyPair();
        System.out.println("初始公钥为: "+initKeyVO.getPubHexInSoft());
        System.out.println("初始私钥为: "+initKeyVO.getPriHexInSoft());
    }

输出结果:

国密:生成SM2秘钥、加解密及加验签

 2、数据加解密

简单业务描述:使用初始公钥加密工作公钥,使用初始私钥解密加密后公钥;

Demo

    public static void main(String[] args) throws IOException {
        //生成初始秘钥
        SM2KeyVO initKeyVO = SM2EncDecUtils.generateKeyPair();
        String initPubKey = initKeyVO.getPubHexInSoft();
        String initPriKey = initKeyVO.getPriHexInSoft();
        System.out.println("初始公钥为: " + initPubKey);
        System.out.println("初始私钥为: " + initPriKey);
        //生成工作秘钥
        SM2KeyVO serverKey = SM2EncDecUtils.generateKeyPair();
        String serverPubKey = serverKey.getPubHexInSoft();
        String serverPriKey = serverKey.getPriHexInSoft();
        System.out.println("服务端公钥为: " + serverPubKey);
        System.out.println("服务端私钥为: " + serverPriKey);
        //使用初始公钥加密服务端公钥 注意格式字节数组
        String encryptServerPubKey = SM2EncDecUtils.encrypt(Convert.hexToBytes(initPubKey), serverPubKey.getBytes());
        System.out.println("加密后公钥:"+encryptServerPubKey);
        //使用初始私钥解密服务端公钥 注意格式
        byte[] decrypt = SM2EncDecUtils.decrypt(Convert.hexToBytes(initPriKey), Convert.hexToBytes(encryptServerPubKey));
        System.out.println("解密后服务端公钥:"+new String(decrypt));
        if (serverPubKey.equals(new String(decrypt)))
            System.out.println("——————————解密成功——————————");

    }

结果:

国密:生成SM2秘钥、加解密及加验签

 至此,SM2的公私钥生成以及加解密就完成了,下一期内容为生成Sign以及验证。文章来源地址https://www.toymoban.com/news/detail-438566.html

到了这里,关于国密:生成SM2秘钥、加解密及加验签的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 前端sm2国密加密解密

    1.下载国密包 2.获取后端的公钥 注sm-crypto使用BC库加解密前端密钥与后端密钥是两队,非常规的base64密钥 前端公钥需要在前面加04占位否则无法解密 3.前端使用公钥进行加密 生成的加密串加04方便后端解密 4.前端使用私钥解密

    2024年02月11日
    浏览(66)
  • 国密SM2前端加密解密示例

    目录 一、 安装sm2依赖 二、编写代码 1、data中绑定数据 2、公钥加密 3、私钥解密 4、按钮绑定一下,数据可见一下 三、完整代码 要改变的数据phone和过程数据copyphone,公钥publicKey和私钥privateKey 具体生成测试公钥私钥可参照SM2加解密 C1为65字节第1字节为压缩标识,这里固定为

    2024年02月03日
    浏览(70)
  • 前端使用国密sm2和sm4进行加解密

    国密SM:国密算法,即国家商用密码算法。是由国家密码管理局认定和公布的密码算法标准及其应用规范,其中部分密码算法已经成为国际标准。如SM系列密码,SM代表商密,即商业密码,是指用于商业的、不涉及国家秘密的密码技术。 安装SM加密依赖 SM2 封装 将sm2的加密解密

    2024年02月08日
    浏览(60)
  • 基于hutool 封装国密sm2,sm4 加解密算法

    基于hutool 封装国密sm2,sm4 加解密算法 1. 加入依赖包 2. 编码

    2024年02月13日
    浏览(50)
  • 国密SM2: 加解密实现 java代码完整示例

    目录  具体Java代码SM2算法加解密实现Demo: pom依赖引入 :  国家密码管理局于2010年12月17日发布了SM2算法,并要求现有的基于RSA算法的电子认证系统、密钥管理系统、应用系统进升级改造,使用支持国密SM2算法的证书。    基于ECC椭圆曲线算法的SM2算法,则普遍采用256位密钥

    2024年02月13日
    浏览(47)
  • 国密sm2公钥加密 私钥解密java代码实现

    目录 一、引入jar包 二、生成秘钥对,加解密工具类

    2024年02月11日
    浏览(72)
  • 国密SM2算法(JS加密,C#、Java解密)

    常见的渗透测试会将网站登录时密码使用明文传输视为风险。推荐使用国密算法或者RSA算法对密码进行加密传输。 RSA加密(JS加密,C#、Java解密)请参考《RSA对称加密(JS加密,C#、Java解密)》​​​​​​ 本文描述国密SM2算法的实现。 一、工作原理 前端js使用公钥进行加密

    2024年02月02日
    浏览(55)
  • 前端国密加解密使用方法SM2、SM3、SM4

       国密算法,即国家商用密码算法。是由国家密码管理局认定和公布的密码算法标准及其应用规范,其中部分密码算法已经成为国际标准。如SM系列密码,SM代表商密,即商业密码,是指用于商业的、不涉及国家秘密的密码技术。      不多废话直接上干货 项目中 可能存在

    2023年04月09日
    浏览(51)
  • 医保移动支付加密解密请求工具封装【国密SM2SM4】

    医保移动支付加密解密请求工具封装 定点医药机构向地方移动支付中心发起费用明细上传、支付下单、医保退费等交易时需要发送密文,由于各大医疗机构厂商的开发语各不相同,可能要有java的、c#的、python的、pb的、nodjs的、php的、还可能有Delphi的等。。。。很多开发语言

    2024年01月21日
    浏览(91)
  • 国密算法SM2 密钥对的生成

            椭圆曲线密码编码学(ECC)是一种理论性很强的学科。后来随着计算科学和密码学的发展,被应用到了公钥密码体制这个领域中。椭圆曲线密码体制最早是由Kobiliz和Millr于185年提出的,是迄今为止安全性最高的一种算法,它的安全性是基于有限域椭圆曲线离散对数(Elipt

    2023年04月08日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包