基于ORB-SLAM3库搭建SLAM系统

这篇具有很好参考价值的文章主要介绍了基于ORB-SLAM3库搭建SLAM系统。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

博客地址:https://www.cnblogs.com/zylyehuo/

参考资料

ORB-SLAM3配置及安装教程
ORB-SLAM3配置安装及运行

环境配置

Win 11pro
VMware 17Pro
Ubuntu 18.04
Eigen3
Pangolin
Opencv3.4.3
ORB-SLAM3源码: https://github.com/UZ-SLAMLab/ORB_SLAM3

效果图

  • 基于ORB-SLAM3库搭建SLAM系统

注意事项

建议留有 15-20G 左右的内存
如果是新系统,没有安装git,则需要先装git
sudo apt-get install git
如果是新系统的话,预装的vi编辑器不完整,用不了
执行如下命令安装vi编辑器
sudo apt-get remove vim-common
sudo apt-get install vim
DBoW2 and g2o
DBoW2主要用于回环检测,g2o(General Graph Optimization)主要用于图优化。
ORB-SLAM3的源码包自带DBoW2 and g2o,编译时会自动安装,不用管。

PART 1:准备工作(下载安装要用的文件)

step1: 新建一个文件夹,用于存放下载的文件

暂取名为 SLAM

step2: 下载 ORB-SLAM3源码

在 SLAM 文件夹下打开终端
输入以下指令
git clone https://github.com/UZ-SLAMLab/ORB_SLAM3.git

step3: 下载 Pangolin

在 SLAM 文件夹下打开终端
输入以下指令
git clone https://github.com/stevenlovegrove/Pangolin.git

step4: 下载 Eigen3

在 SLAM 文件夹下打开终端
输入以下指令
git clone https://github.com/eigenteam/eigen-git-mirror

PART 2:安装步骤

step1: 安装 Eigen3

在 SLAM 文件夹下打开终端
输入以下指令
cd eigen-git-mirror
mkdir build
cd build
cmake ..
sudo make install
 
#安装后,头文件安装在/usr/local/include/eigen3/

step2: 安装 Pangolin

安装 Pangolin 需要的依赖工具

在终端依次输入以下指令
sudo apt install libgl1-mesa-dev
sudo apt install libglew-dev
sudo apt install cmake
sudo apt install libpython2.7-dev
sudo apt install pkg-config
sudo apt install libegl1-mesa-dev libwayland-dev libxkbcommon-dev wayland-protocols

安装 Pangolin

在 SLAM 文件夹下打开终端
输入以下指令
cd Pangolin
mkdir build
cd build
cmake ..
cmake --build .

step3: 安装 Opencv3.4.3

官网下载地址:https://opencv.org/releases/page/5/

  • 基于ORB-SLAM3库搭建SLAM系统

下载之后放在最开始创建的 SLAM 文件夹,右键提取文件进行解压
更新一下,准备安装OpenCV依赖库

在终端输入以下指令
sudo apt-get update

安装OpenCV所有依赖库

在终端输入以下指令
sudo apt-get install build-essential libgtk2.0-dev libavcodec-dev libavformat-dev libjpeg-dev libtiff5-dev libswscale-dev libjasper-dev

# 原博客安装的是libtiff4-dev,运行过程报错,改成libtiff5-dev

编译OpenCV

在 SLAM 文件夹下打开终端
输入以下指令
cd opencv-3.4.3
mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
注意:执行上面指令后,终端会自动下载一个必需的ippicv加速库。
如果终端卡住并显示正在下载,只需要等一会儿不用进行任何操作。
否则,终端会显示报错
cmake完成之后使用make编译
make -j4
安装
sudo make install

配置环境

1、添加库路径
sudo /bin/bash -c 'echo "/usr/local/lib" > /etc/ld.so.conf.d/opencv.conf'
2、更新系统库
sudo ldconfig
3、配置bash
sudo gedit /etc/bash.bashrc

在末尾添加如下两行代码
PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig  
export PKG_CONFIG_PATH 

保存,执行如下指令使得配置生效
source /etc/bash.bashrc 

更新
sudo updatedb  
4、版本检测

pkg-config --modversion opencv
输出如下,表示OpenCV完成了安装

  • 基于ORB-SLAM3库搭建SLAM系统

step4: 安装 boost 库

boost官网地址:https://www.boost.org/
下载 1.77.0 版本

  • 基于ORB-SLAM3库搭建SLAM系统
  • 基于ORB-SLAM3库搭建SLAM系统
将文件下载至SLAM文件夹下,并解压
解压之后进入解压出来的文件夹
执行以下指令

sudo ./bootstrap.sh

执行完毕之后,会发现又多了些文件
再执行下面这个脚本

sudo ./b2 install

需要一段时间,耐心等待即可

step5: 安装 libssl-dev

在 SLAM 文件夹下打开终端
输入以下指令
sudo apt-get install libssl-dev

step6: ORB-SLAM3 的编译和安装

ORB-SLAM3 源码编译

在 SLAM 文件夹下打开终端
输入以下指令
cd ORB_SLAM3-master
chmod +x build.sh
打开ORB_SLAM3-master对应的CMakeLists.txt
找到 find_package(OpenCV 4.4)这行代码,将OpenCV版本号改为find_package(OpenCV 3.4)

逐行依次执行以下指令

安装 ORB-SLAM3

echo "Configuring and building Thirdparty/DBoW2 ..."
 
cd Thirdparty/DBoW2
mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
make -j
 
cd ../../g2o
 
echo "Configuring and building Thirdparty/g2o ..."
 
mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
make -j

cd ../../Sophus

echo "Configuring and building Thirdparty/Sophus ..."

mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
make -j

cd ../../../

echo "Uncompress vocabulary ..."

cd Vocabulary
tar -xf ORBvoc.txt.tar.gz
cd ..

echo "Configuring and building ORB_SLAM3 ..."

mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
make -j5

出现以下图片,则代表安装成功

  • 基于ORB-SLAM3库搭建SLAM系统

PART 3:测试环境是否搭建成功(数据集测试)

EuRoc数据集下载地址:
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets#downloads
要下载ASL格式的,下载V102V103两个

  • 基于ORB-SLAM3库搭建SLAM系统

这个压缩包下好之后,解压打开之后,里面是一个mav0的文件夹(有些打开会还有一个_MACOSX 文件加,可以直接删掉,只留mav0文件夹)
具体原因是这个其实是在MAC操作系统压缩时产生的缓存垃圾,在Windows系统、Linux系统就会显示出来
然后在ORB_SLAM3-master文件夹下创建一个文件夹dataset,
在dataset文件夹下将解压的数据集文件夹放进来
eg. /ORB_SLAM3-master/dataset/V102/mav0
在ORB_SLAM3-master的源码中,有一个Examples文件夹
去下面这个链接拷贝 脚本euroc_examples.shExamples文件夹
https://github.com/electech6/ORB_SLAM3_detailed_comments

  • 基于ORB-SLAM3库搭建SLAM系统
  • 基于ORB-SLAM3库搭建SLAM系统
打开**euroc_examples.sh** 这个脚本,里面有ORB-SLAM3各种运行模式针对各个数据集的运行指令,选择下载数据集对应模式下的指令,提取出来(以V102、单目+IMU为例):

./Examples/Monocular-Inertial/mono_inertial_euroc ./Vocabulary/ORBvoc.txt ./Examples/Monocular-Inertial/EuRoC.yaml “$pathDatasetEuroc”/V102 ./Examples/Monocular-Inertial/EuRoC_TimeStamps/V102.txt dataset-V102_monoi

加粗的地方需要改
**“$pathDatasetEuroc”**改为 ./dataset,表示数据集所在的路径
在ORB_SLAM3-master文件夹下打开终端执行以下这条指令
./Examples/Monocular-Inertial/mono_inertial_euroc ./Vocabulary/ORBvoc.txt ./Examples/Monocular-Inertial/EuRoC.yaml ./dataset/V102 ./Examples/Monocular-Inertial/EuRoC_TimeStamps/V102.txt dataset-V102_monoi

出现以下画面则代表 ORB-SLAM3 成功运行,即环境安装完成

  • 基于ORB-SLAM3库搭建SLAM系统
  • 基于ORB-SLAM3库搭建SLAM系统
  • 基于ORB-SLAM3库搭建SLAM系统
  • 基于ORB-SLAM3库搭建SLAM系统

PART 4:部分问题解决方案

1、 在安装OpenCV所有依赖库的时候出现报错信息

error: unable to locate libjasper-dev 无法定位这个包libjasper-dev
解决方法是:执行以下指令
sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"
sudo apt update
sudo apt install libjasper1 libjasper-dev
运行完这个,再输入以下这个指令
sudo apt-get install build-essential libgtk2.0-dev libavcodec-dev libavformat-dev libjpeg.dev libtiff4.dev libswscale-dev libjasper-dev

2、编译OpenCV时报错

  • 基于ORB-SLAM3库搭建SLAM系统
解决方法是下载离线的ippicv库
下载链接为:https://github.com/opencv/opencv_3rdparty/tree/ippicv/master_20170822
  • 基于ORB-SLAM3库搭建SLAM系统

下载好之后,把这个ippicv文件夹单独拷贝出来,放到自己的文件夹中
然后把OpenCV源文件中 /3rdparty/ippicv 文件夹下的 ippicv.cmake 中第47行"https://raw.githubusercontent.com/opencv/opencv_3rdparty/${IPPICV_COMMIT}/ippicv/" 改成新下载的ippicv文件路径。
这样,就改成了离线编译的ippicv文件

再次执行cmake指令,完成编译
cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
cmake完成之后使用make编译
make -j4
安装
sudo make install

3、在配置bash时候报错

如果执行sudo updatedb 指令报错,那么可能是没有安装mlocate
解决方法
先执行安装命令:apt-get install mlocate
再执行:sudo updatedb

4、安装 ORB-SLAM3 时候报错

运行最后一条指令 make -j5 时,出现报错如下:

  • 基于ORB-SLAM3库搭建SLAM系统
解决方法
打开对应的文件,如Tracking.cc,LoopClosing.cc等
在所有 #include 后面添加以下代码
namespace cv
{
template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator / (const Matx<_Tp, m, n> &a, float alpha)
{
return Matx<_Tp, m, n>(a, 1.f / alpha, Matx_ScaleOp());
}
}

效果如图文章来源地址https://www.toymoban.com/news/detail-438767.html

  • 基于ORB-SLAM3库搭建SLAM系统
最后一条指令若使用 make -j4 或 make -j5,即使在对应的文件中加入了上述代码如果仍然会报错。

可改成仅使用 make 进行编译,但同时,改成make之后编译速度大大降低,需要等很久

到了这里,关于基于ORB-SLAM3库搭建SLAM系统的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • SLAM ORB-SLAM2(20)查找基础矩阵

    在 《SLAM ORB-SLAM2(12)估算运动并初始地图点》 的 2.3. 计算H矩阵和F矩阵过程 中

    2024年03月17日
    浏览(56)
  • SLAM ORB-SLAM2(22)分解基础矩阵

    在 《SLAM ORB-SLAM2(12)估算运动并初始地图点》 中了解到 估算两帧间相对运动过程: 记录特征点对的匹配关系 RANSAC 采样准备 计算H矩阵或者F矩阵 判断并选取模型求位姿过程 在

    2024年04月15日
    浏览(41)
  • ORB-SLAM内的卡方检验

    Reference: 卡方检验(Chi-square test/Chi-Square Goodness-of-Fit Test) 卡方检验详解分析与实例 卡方值: χ 2 chi^2 χ 2 值表示观察值与理论值之间的偏离程度。计算这种偏离程度的基本思路如下: 设 O O O 代表某个类别的 观察频数 , E E E 代表基于某个假设 H 0 H_0 H 0 ​ 计算出的 期望频数 ,

    2024年02月06日
    浏览(54)
  • ORB-SLAM3跑本地视频

    把录制的视频放入ORB-SLAM3文件夹内,文件命名为:myvideo.mp4 在同一目录下添加myvideo.yaml、myvideo.cc 重新编译ORB-SLAM3 会出现myvideo执行文件 在此文件夹打开终端输入: ./myvideo 即可运行视频

    2023年04月22日
    浏览(44)
  • ORB-SLAM3整体流程详解

    在之前,作者曾经转过一篇《一文详解ORB-SLAM3》的文章。那篇文章中提到了ORB-SLAM3是一个支持视觉、视觉加惯导、混合地图的SLAM系统,可以在单目,双目和RGB-D相机上利用针孔或者鱼眼模型运行。与ORB-SLAM2相比,ORB-SLAM3在处理大视差和长时间未观测到的场景时效果更好。它还

    2024年02月06日
    浏览(52)
  • ORB-SLAM2环境配置及运行

    本文是基于Ubuntu 20.04及OpenCV 4.6.0成功运行ORB-SLAM2,并在开源数据集上进行了测试。由于OpenCV和其他依赖库的版本较新,编译过程会出现一些问题,需要修改部分代码和CMakeLists.txt文件,这里做一个记录,也希望能帮到有需要的小伙伴。 开始尝试安装Eigen3.4.0和Pangolin-0.8版本,后

    2024年02月03日
    浏览(48)
  • SLAM ORB-SLAM2(21)基础矩阵的计算和评分

    在 《SLAM ORB-SLAM2(20)查找基础矩阵》 中了解到 查找基础矩阵主要过程: 特征点坐标归一化 Normalize 函数 Normalize 参考 《SLAM ORB-SLAM2(14)特征点坐标归一化》 选择归一化之后的特征点 八点法计算基础矩阵 ComputeF21 评分并评优 CheckFundamental 现在来看看基础矩阵如何计算和评分

    2024年03月09日
    浏览(47)
  • ORB-SLAM3算法2之EuRoc、TUM和KITTI开源数据集运行ORB-SLAM3生成轨迹并用evo工具评估轨迹

    ORB-SLAM3算法1 已成功编译安装ORB-SLAM3到本地,本篇目的是用 EuRoc 开源数据来运

    2024年02月08日
    浏览(41)
  • ORB-SLAM3 数据集配置与评价

    在ORB-SLAM3运行EuRoC和TUM-VI数据集并作以评价。EuRoC利用微型飞行器(MAV ) 收集的视觉惯性数据集,TUM-VI 是由实验人员手持视觉-惯性传感器收集的数据集。这两个是在视觉SLAM中比较常用的公开数据集,所以测试并加以记录。 1、EuRoC官网下载 从官网下载Euroc数据集,ASL格式 2、新

    2024年02月15日
    浏览(69)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包