10个最流行的向量数据库【AI】

这篇具有很好参考价值的文章主要介绍了10个最流行的向量数据库【AI】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

矢量数据库是一种将数据存储为高维向量的数据库,高维向量是特征或属性的数学表示。 每个向量都有一定数量的维度,范围从几十到几千不等,具体取决于数据的复杂性和粒度。

10个最流行的向量数据库【AI】

推荐:用 NSDT场景设计器 快速搭建3D场景。

矢量数据库(Vector Database)和矢量开发库(Vector Library)都是实现矢量相似性搜索的技术,但它们在功能和可用性上有所不同。 矢量数据库可以存储和更新数据,处理各种类型的数据源,在数据导入期间执行查询,并提供用户友好和企业就绪的功能。 矢量库只能存储数据,只能处理矢量,需要在建立索引之前导入所有数据,并且需要更多的技术专业知识和手动配置。

一些矢量数据库建立在现有库之上,例如 Faiss。 这使他们能够利用库的现有代码和功能,从而节省开发时间和精力。

这些矢量数据库和库用于人工智能 (AI) 应用程序,例如机器学习、自然语言处理和图像识别。 它们有一些共同的特点:

  • 支持向量相似性搜索,它会找到与查询向量最近的 k 个向量,这是通过相似性度量来衡量的。 矢量相似性搜索对于图像搜索、自然语言处理、推荐系统和异常检测等应用非常有用。
  • 使用矢量压缩技术来减少存储空间并提高查询性能。 矢量压缩方法包括标量量化、乘积量化和各向异性矢量量化。
  • 可以执行精确或近似的最近邻搜索,具体取决于准确性和速度之间的权衡。 精确最近邻搜索提供了完美的召回率,但对于大型数据集可能会很慢。 近似最近邻搜索使用专门的数据结构和算法来加快搜索速度,但可能会牺牲一些召回率。
  • 支持不同类型的相似性度量,例如 L2 距离、内积和余弦距离。 不同的相似性度量可能适合不同的用例和数据类型。
  • 可以处理各种类型的数据源,例如文本、图像、音频、视频等。 可以使用机器学习模型将数据源转化为向量嵌入,例如词嵌入、句子嵌入、图像嵌入等。

1、Elasticsearch

ElasticSearch是一个支持各种类型数据的分布式搜索和分析引擎。 Elasticsearch 支持的数据类型之一是矢量字段,它存储密集的数值矢量。
10个最流行的向量数据库【AI】

在 7.10 版本中,Elasticsearch 添加了对将向量索引到专用数据结构的支持,以支持通过 kNN 搜索 API 进行快速 kNN 检索。 在 8.0 版本中,Elasticsearch 添加了对带有向量场的原生自然语言处理 (NLP) 的支持。

2、Faiss

Meta的Faiss是一个用于高效相似性搜索和密集向量聚类的库。 它包含搜索任意大小的向量集的算法,直到可能不适合 RAM 的向量集。 它还包含用于评估和参数调整的支持代码。
10个最流行的向量数据库【AI】

3、Milvus

Milvus是一个开源矢量数据库,可以管理万亿矢量数据集,支持多种矢量搜索索引和内置过滤。
10个最流行的向量数据库【AI】

4、Weaviate

Weaviate是一个开源向量数据库,允许你存储数据对象和来自你最喜欢的 ML 模型的向量嵌入,并无缝扩展到数十亿个数据对象。

10个最流行的向量数据库【AI】

5、Pinecone

Pinecone专为机器学习应用程序设计的矢量数据库。 它速度快、可扩展,并支持多种机器学习算法。
10个最流行的向量数据库【AI】

Pinecone 建立在 Faiss 之上,Faiss 是一个用于密集向量高效相似性搜索的库。

6、Qdrant

Qdrant是一个矢量相似度搜索引擎和矢量数据库。 它提供了一个生产就绪的服务,带有一个方便的 API 来存储、搜索和管理点——带有额外有效负载的矢量。

10个最流行的向量数据库【AI】

Qdrant 专为扩展过滤支持而定制。 它使它可用于各种神经网络或基于语义的匹配、分面搜索和其他应用程序。

7、Vespa

Vespa是一个功能齐全的搜索引擎和矢量数据库。 它支持向量搜索 (ANN)、词法搜索和结构化数据搜索,所有这些都在同一个查询中。 集成的机器学习模型推理允许你应用 AI 来实时理解你的数据。

10个最流行的向量数据库【AI】

8、Vald

Vald是一个高度可扩展的分布式快速近似最近邻密集向量搜索引擎。 Vald是基于Cloud-Native架构设计和实现的。 它使用最快的 ANN 算法 NGT 来搜索邻居。
10个最流行的向量数据库【AI】

Vald 具有自动向量索引和索引备份,以及水平缩放,可从数十亿特征向量数据中进行搜索。

9、ScaNN (Google Research)

ScaNN(Scalable Nearest Neighbours)是一个用于高效向量相似性搜索的库,它找到 k 个与查询向量最近的向量,通过相似性度量来衡量。 矢量相似性搜索对于图像搜索、自然语言处理、推荐系统和异常检测等应用非常有用。
10个最流行的向量数据库【AI】

10、pgvector

pgvector是PostgreSQL 的开源扩展,允许你在数据库中存储和查询向量嵌入。 它建立在 Faiss 库之上,Faiss 库是一个流行的密集向量高效相似性搜索库。 pgvector 易于使用,只需一条命令即可安装。
10个最流行的向量数据库【AI】


原文链接:10个顶级矢量数据库 — BimAnt文章来源地址https://www.toymoban.com/news/detail-438827.html

到了这里,关于10个最流行的向量数据库【AI】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • centos 安装AI 向量数据库 chroma

    1 官网地址:https://docs.trychroma.com/getting-started 有两种方式:1,通过pip install ; 2 运行docker。 本教程通过pip install 方式: 通过以下方式解决: 写一个python测试程序 chromatest.py pip3 chromatest.py 运行报错: ImportError: zstd C API versions mismatch; Python bindings were not compiled/linked against expect

    2024年02月09日
    浏览(36)
  • Spring AI - 使用向量数据库实现检索式AI对话

     Spring AI 并不仅限于针对大语言模型对话API进行了统一封装,它还可以通过简单的方式实现LangChain的一些功能。本篇将带领读者实现一个简单的检索式AI对话接口。  在一些场景下,我们想让AI根据我们提供的数据进行回复。因为对话有最大Token的限制,因此很多场景下我们

    2024年04月14日
    浏览(52)
  • (LLM) 的所有知识;10分钟了解向量数据库;微软 Bing 可以识别图片了;

    🦉 AI新闻 🚀 微软 Bing 可以识图」了,吊打 GPT-4? 摘要 :微软 Bing 最新识图功能让用户可以上传图片并进行编程、做题、看病等操作,还能分析梗图笑点。然而在某些情况下表现不佳,例如无法数清图片中的图案数量,或是犯错解释棋盘。综合来看,Bing 的图像识别能力十

    2024年02月09日
    浏览(36)
  • AI大模型的制作:RAG和向量数据库,分别是什么?

    目录 一、什么是 AI 大模型 二、RAG 三、向量数据库 四、如何制作一个好的 AI 大模型 AI大模型是指具有大规模参数和复杂结构的人工智能模型。传统的机器学习模型通常有限的参数量,而AI大模型则通过增加参数量和层数来提升模型的表达能力和性能。这种模型通常使用深度

    2024年02月05日
    浏览(48)
  • AI大模型低成本快速定制秘诀:RAG和向量数据库

      当今人工智能领域,最受关注的毋庸置疑是大模型。然而,高昂的训练成本、漫长的训练时间等都成为了制约大多数企业入局大模型的关键瓶颈。   这种背景下,向量数据库凭借其独特的优势,成为解决低成本快速定制大模型问题的关键所在。   向量数据库是一种

    2024年02月05日
    浏览(46)
  • AI大模型低成本快速定制法宝:RAG和向量数据库

      当今人工智能领域,最受关注的毋庸置疑是大模型。然而,高昂的训练成本、漫长的训练时间等都成为了制约大多数企业入局大模型的关键瓶颈。   这种背景下,向量数据库凭借其独特的优势,成为解决低成本快速定制大模型问题的关键所在。   向量数据库是一种

    2024年02月05日
    浏览(43)
  • ModaHub魔搭社区:腾讯云定义AI Native向量数据库

    大模型时代的到来,拥抱大模型成为企业的刚需。 向量数据库通过把数据向量化然后进行存储和查询,可以极大地提升效率和降低成本。它能解决大模型预训练成本高、没有“长期记忆”、知识更新不足、提示词工程复杂等问题,突破大模型在时间和空间上的限制,加速大模

    2024年02月12日
    浏览(50)
  • 用AI原生向量数据库Milvus Cloud 搭建一个 AI 聊天机器人

    搭建聊天机器人 一切准备就绪后,就可以搭建聊天机器人了。 文档存储 机器人需要存储文档块以及使用 Towhee 提取出的文档块向量。在这个步骤中,我们需要用到 Milvus。 安装轻量版 Milvus Lite,使用以下命令运行 Milvus 服务器: 或者,运行 Notebook 中的代码:

    2024年02月07日
    浏览(47)
  • ModaHub魔搭社区:AI原生云向量数据库MIlvus Cloud实现 HNSW

    HNSW 并不简单,因此我们只在此处进行最简单的实现。像之前一样,我们首先创建一组(128 维)向量的数据集: 第一步是构建 HNSW 索引。为此,我们需要将每个向量添加到我们的数据集中。我们首先创建一个数据结构来保存索引。在这个基本示例中,我们将使用列表的列表来

    2024年02月15日
    浏览(44)
  • AI实践与学习1_NLP文本特征提取以及Milvus向量数据库实践

    随着NLP预训练模型(大模型)以及多模态研究领域的发展,向量数据库被使用的越来越多。 在XOP亿级题库业务背景下,对于试题召回搜索单单靠着ES分片集群普通搜索已经出现性能瓶颈,因此需要预研其他技术方案提高试题搜索召回率。 现一个方案就是使用Bert等模型提取试

    2024年01月24日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包