Realsense D435i Yolov5目标检测实时获得目标三维位置信息

这篇具有很好参考价值的文章主要介绍了Realsense D435i Yolov5目标检测实时获得目标三维位置信息。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


一、效果演示

- Colorimage:

Realsense D435i Yolov5目标检测实时获得目标三维位置信息

- Colorimage and depthimage:

Realsense D435i Yolov5目标检测实时获得目标三维位置信息


二、环境配置

1.一个可以运行YOLOv5的python环境

pip install -r requirements.txt

2.一个realsense相机和pyrealsense2库

pip install pyrealsense2

在下面两个环境中测试成功

  • win10 python 3.8 Pytorch 1.10.2+gpu CUDA 11.3 NVIDIA GeForce MX150

  • ubuntu16.04 python 3.6 Pytorch 1.7.1+cpu

三、模型配置

修改模型配置文件,以yolov5s为例。
如果使用自己训练的模型,需要进行相应的修改。

weight:  "weights/yolov5s.pt"
# 输入图像的尺寸
input_size: 640
# 类别个数
class_num:  80
# 标签名称
class_name: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
         'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
         'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
         'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
         'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
         'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
         'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
         'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
         'hair drier', 'toothbrush' ]
# 阈值设置
threshold:
  iou: 0.45
  confidence: 0.6
# 计算设备
# - cpu
# - 0 <- 使用GPU
device: '0'

四、相机配置

分辨率好像只能改特定的参数,不然会报错。d435i可以用 1280x720, 640x480, 848x480。

pipeline = rs.pipeline()  # 定义流程pipeline
config = rs.config()  # 定义配置config
config.enable_stream(rs.stream.depth, 1280, 720, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 1280, 720, rs.format.bgr8, 30)
profile = pipeline.start(config)  # 流程开始

五、部分代码:

下方代码实现从像素坐标系到相机坐标系转换,并且标注中心点以及三维坐标信息。

for i in range(len(xyxy_list)):
    ux = int((xyxy_list[i][0]+xyxy_list[i][2])/2)  # 计算像素坐标系的x
    uy = int((xyxy_list[i][1]+xyxy_list[i][3])/2)  # 计算像素坐标系的y
    dis = aligned_depth_frame.get_distance(ux, uy)  
    camera_xyz = rs.rs2_deproject_pixel_to_point(
    depth_intrin, (ux, uy), dis)  # 计算相机坐标系xyz
    camera_xyz = np.round(np.array(camera_xyz), 3)  # 转成3位小数
    camera_xyz = camera_xyz.tolist()
    cv2.circle(canvas, (ux,uy), 4, (255, 255, 255), 5)#标出中心点
    cv2.putText(canvas, str(camera_xyz), (ux+20, uy+10), 0, 1,
                                [225, 255, 255], thickness=2, lineType=cv2.LINE_AA)#标出坐标
    camera_xyz_list.append(camera_xyz)
    #print(camera_xyz_list)

六、仓库链接:

代码已上传github:yolov5_d435i_detection
文章来源地址https://www.toymoban.com/news/detail-439669.html

到了这里,关于Realsense D435i Yolov5目标检测实时获得目标三维位置信息的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • jetsonTX2 nx配置yolov5和D435I相机,完整步骤

    转载一篇问题解决博客:问题解决 一、烧录系统 使用SDK烧录 二、安装archiconda3 JETSON TX2 NX的架构是aarch64,与win10,linxu不同,所以不能安装Anaconda,这里安装对应的archiconda。 1. 安装 2. 配置环境变量 3. 创建虚拟环境 其他相关命令(来源:相关命令) 换源 安装成功截图 三、安装

    2024年02月03日
    浏览(53)
  • Ubuntu 20.04 Intel RealSense D435i 相机标定教程

    报错:sumpixel_test.cpp:2:10: fatal error: backward.hpp: 没有那个文件或目录,将sumpixel_test.cpp中# include \\\"backward.hpp\\\"改为:#include “code_utils/backward.hpp”。 报错 创建rs_imu_calibration.launch 找到realsense-ros包,进入/catkin_ws/src/realsense2_camera/launch(路径仅供参考),复制其中的rs_camera.launch,并重

    2024年01月16日
    浏览(48)
  • realsense D435i 实现外部时钟触发硬件同步多相机数据采集

    最近有一个调试D435i相机的工作,需要使得三个相机能够完成硬件触发的同步,具体来说,就是有一个固定频率的外部脉冲信号,使得三个相机能够根据外部脉冲信号的硬件触发完成双目图片、深度图片、彩色图片、IMU数据的实时响应采集,因为外部脉冲信号是通过一个精确

    2024年01月16日
    浏览(49)
  • Intel RealSense D435i深度相机通过点云获取图片中任意点三维信息(python实现)

    此时效果(左侧RGB图,右侧深度图)(过近时深度信息几乎显示不出来)  按下p键暂停画面 按下s键保存图片 按下r键读取刚才保存的图片,并通过image_sliced文件将图片裁剪到自己需要的范围 image_sliced.py 按下g键进行图像处理,判断方向,并将三维信息显示在图片上 image_pro

    2023年04月08日
    浏览(52)
  • Ubuntu18.04安装配置使用Intel RealSense D435i深度相机以及在ROS环境下配置

    最近因为学习开发需要,要开始接触一些视觉相关的内容,拿到了一个Inter 的D435i深度相机,记录一下在Ubuntu18环境下配置SDK 包的历程 注意 : Intel官方最新版的librealsense版本与ROS1的ROS Wrapper是 版本不一致的 ,且ROS Wrapper支持的是较低版本的SDK ,具体可以去网站查看 如果完全

    2024年02月07日
    浏览(53)
  • ROS D435I识别目标并获取深度数据

    使用D435I相机,并基于ros获取到彩色图像和匹配后的深度数据,通过OPENCV对彩色图像进行目标识别,得到目标所在的像素范围,随后得到深度数据 重点在于:转换ros图像数据到opencv格式,得到目标像素点的实际深度值 d435i启动与修改 使用上述指令启动d435i,可以在里面进行分

    2024年02月10日
    浏览(46)
  • ubuntu18.04安装Realsense D435i相机SDK及realsense-ros记录,为后期运行yolo v5作准备

    写在前面 :一定要注意各个版本之间的匹配问题,否则会报各种错误。 例如ROS版本和librealsense SDK版本之间的对应关系,以及realsense-ros(Wrapper)与librealsense SDK之间的对应关系 。 系统:ubuntu18.04 ros: melodic 附上Intel® RealSense github网站: https://github.com/IntelRealSense 以及安装教程

    2024年02月05日
    浏览(54)
  • (已修正精度 1mm左右)Realsense d435i深度相机+Aruco+棋盘格+OpenCV手眼标定全过程记录

    最近帮别人做了个手眼标定,然后我标定完了大概精度能到1mm左右。所以原文中误差10mm可能是当时那个臂本身的坐标系有问题。然后用的代码改成了基于python的,放在下面。 新来的小伙伴可以只参考前面的代码就可以完成标定了。 有问题的话可以留言,一起交流~ 手眼标定

    2024年02月04日
    浏览(47)
  • 【深度相机D435i】Windows+Ubuntu下调用D435i利用Python读取、保存RGB、Depth图片

    最近组里面的项目需要用到D435i深度相机采集深度图片,所以记录一下在Windows+Ubuntu的环境下使用D435i深度相机的流程,以及如何利用python读取、保存常见的RGB、Depth图片。 D435i 在小巧外形中采用英特尔模块和视觉处理器,是一个功能强大的一体产品,可与可定制软件配合使用

    2024年02月02日
    浏览(50)
  • d435i 相机和imu标定

    使用 imu_utils 功能包标定 IMU,由于imu_utils功能包的编译依赖于code_utils,需要先编译code_utils,主要参考 相机与IMU联合标定_熊猫飞天的博客-CSDN博客 Ubuntu20.04编译并运行imu_utils,并且标定IMU_学无止境的小龟的博客-CSDN博客 1.1 编译 code_utils 创建工作空间 1.1.1 修改 CMakeLists.txt 文件

    2024年02月09日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包