mmpose关键点(一):评价指标(PCK,OKS,mAP)

这篇具有很好参考价值的文章主要介绍了mmpose关键点(一):评价指标(PCK,OKS,mAP)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

由于,近期项目需要引入关键点做一些方向逻辑的判断,在此记录一些实验与经典论文方法。首先,我们先了解一下关键点估计的评价指标。

1.PCK - Percentage of Correct Keypoints

PCK表示关键点正确估计的比例
计算检测的关键点与其对应的groundtruth间的归一化距离小于设定阈值的比例。在MPII 中是以头部长度(head length) 作为归一化参考。
mmpose关键点(一):评价指标(PCK,OKS,mAP)
d 0 d_0 d0表示检测器, σ \sigma σ表示关键点是否与gt匹配的阈值,正确估计出的关键点比例。这是比较老的人体姿态估计指标,在17年比较广泛使用,现在基本不再使用。

2.OKS - object keypoint similarity

OKS(object keypoint similarity),关键点相似度,在人体关键点评价任务中,对于网络得到的关键点好坏,并不是仅仅通过简单的欧氏距离来计算的,而是有一定的尺度加入,来计算两点之间的相似度。

O K S = ∑ i [ e x p ( − d p i 2 / 2 s p 2 σ i 2 ) δ ( v i > 0 ) ] / ∑ i [ δ ( v i > 0 ) ] OKS={\sum}_{i}{[exp(-{d}^{2}_{pi}}/2s_p^{2}\sigma^{2}_{i})\delta(v_i>0)]/{\sum}_{i}{[\delta(v_{i}>0)]} OKS=i[exp(dpi2/2sp2σi2)δ(vi>0)]/i[δ(vi>0)]
其中,p表示gt中的id, p i p^i pi表示某id的关键点。
d p i d_{pi} dpi表示当前检测的一组关键点中id为i的关键点与groundtruth里行人p的关键点中id为 的关键点的欧式距离。
v i v_i vi=1表示关键点无遮挡且已标注, v i v_i vi=2表示关键点有遮挡但已标注。
S p S_p Sp表示gt中id为p的尺度因子,其值为检测框面积的平方根。
σ i \sigma_i σi表示id为i类型的关键点归一化因子,这个因子是通过对所有的样本集中的groundtruth关键点由人工标注与真实值存在的标准差, 越大表示此类型的关键点越难标注。对coco数据集中的5000个样本统计出17类关键点的归一化因子,取值可以为:{鼻子:0.026,眼睛:0.025,耳朵:0.035,肩膀:0.079,手肘:0.072,手腕:0.062,臀部:0.107,膝盖:0.087,脚踝:0.089},因此此值可以当作常数看待,但是使用的类型仅限这个里面。

3.AP(Average Precision)平均准确率

计算出groundtruth与检测得到的关键点的相似度oks,然后人为的给定一个阈值T(在coco中T就是iou(0.5-0.95)),当oks大于T时可以认为该pred为tp(当出现多个关键点时,oks表示所有点的平均oks),通过所有图片的oks计算AP:
mmpose关键点(一):评价指标(PCK,OKS,mAP)
关键点AP的算法与目标检测是类似的,区别在于,目标检测是计算DT与GT的iou,而kpt是用oks相似度作为iou比较。

mAP(mean Average Precision)

mAP是常用检测指标,具体就是给AP指标中的人工阈值T设定不同的值,然后会获得多个AP指标,最后再对多个AP指标求平均,最终获得mAP。文章来源地址https://www.toymoban.com/news/detail-439791.html

到了这里,关于mmpose关键点(一):评价指标(PCK,OKS,mAP)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 2D人脸关键点转3D人脸关键点的映射~头部姿态笔记

    对通过相机参数计算图像上的二维坐标到三维坐标的映射进行简单探讨。         学习的话直接看他们的就好,我仅是拾人牙慧,拿GPT写给自己看的,图也是直接搬运的别人画的,以下链接有很完善的理论研究和代码提供。 https://medium.com/@susanne.thierfelder/head-pose-estimation

    2024年02月04日
    浏览(51)
  • 关键点数据增强

    1.关键点平移数据增强 2.关键点旋转数据增强 3.关键点可视化 4.json2txt(用YOLOV8进行关键点训练) 5.划分训练集和验证集

    2024年02月09日
    浏览(41)
  • Mediapipe人脸关键点检测

    MediaPipe是由google制作的开源的、跨平台的机器学习框架,可以将一些模型部署到不同的平台和设备上使用的同时,也能保住检测速度。 从图中可以发现,能在Python上实现的功能包括人脸检测(Face Detection)、人脸关键点(Face Mesh),手部关键点(Hands)等。利用C++能实现更丰富

    2024年02月02日
    浏览(42)
  • opencv-人脸关键点定位

    2024年02月12日
    浏览(54)
  • 解剖学关键点检测方向论文翻译和精读:基于热力图回归的CNN融入空间配置实现关键点定位

    Abstract: In many medical image analysis applications, only a limited amount of training data is available due to the costs of image acquisition and the large manual annotation effort required from experts. Training recent state-of-the-art machine learning methods like convolutional neural networks (CNNs) from small datasets is a challenging task. In this wo

    2024年02月09日
    浏览(106)
  • OpenCV实现人脸关键点检测

    目录 实现过程 1,代码解读 1.1 导入工具包 1.2导入所需图像,以及训练好的人脸预测模型 1.3 将 dlib 的关键点对象转换为 NumPy 数组,以便后续处理 1.4图像上可视化面部关键点 1.5# 读取输入数据,预处理 1.6进行人脸检测 1.7遍历检测到的框 1.8遍历每个面部 2,所有代码 3,结果

    2024年04月23日
    浏览(60)
  • 关键点检测SIFT算法笔记

            SIFT(Scale Invariant Feature Transform),尺度不变特征变换。具有旋转不变性、尺度不变性、亮度变化保持不变性,是一种非常稳定的局部特征。在目标检测和特征提取方向占据着重要的地位。         SIFT算法所查找到的关键点是一些很突出,不因光照、仿射变换和噪

    2024年02月16日
    浏览(50)
  • MediaPipe人体姿态、手指关键点检测

    Mediapipe是google的一个开源项目,用于构建机器学习管道 提供了16个预训练模型的案例:人脸检测、Face Mesh、虹膜、手、姿态、人体、人物分割、头发分割、目标检测、Box Tracking、Instant Motion Tracking、3D目标检测、特征匹配、AutoFlip、MediaSequence、YouTube-8M 肢体识别本质上还是分类

    2024年02月08日
    浏览(56)
  • 关键点匹配——商汤LoFTR源码详解

    源码地址见文末         首先,进入目录,使用pip install -r requirements.txt配置环境。         首先,对于demo的运行,首先需要准备好需要用于关键点匹配的数据,提供的代码中置于了image文件夹下,然后是训练的权重,代码中下载了室内场景和室外场景的训练权重。  配置参

    2024年02月07日
    浏览(41)
  • Pytorch+Python实现人体关键点检测

    用Python+Pytorch工程代码对人体进行关键点检测和骨架提取,并实现可视化。 物体检测为许多视觉任务提供动力,如实例分割、姿态估计、跟踪和动作识别。它在监控、自动驾驶和视觉答疑中有下游应用。当前的对象检测器通过紧密包围对象的轴向包围框来表示每个对象。然后

    2024年02月09日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包