PSP - 配置 AlphaFold2 的高效运行环境

这篇具有很好参考价值的文章主要介绍了PSP - 配置 AlphaFold2 的高效运行环境。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://blog.csdn.net/caroline_wendy/article/details/130560538

PSP - 配置 AlphaFold2 的高效运行环境

AlphaFold2 是由 DeepMind 开发,可以根据蛋白质的氨基酸序列预测其三维结构,准确度经常可以与实验相媲美。DeepMind 和 EMBL 的欧洲生物信息学研究所合作,创建AlphaFold DB,免费向科学界提供这些预测结果。最新的数据库版本,包含了超过 200 万种蛋白质的结构预测,涵盖人类和其他 20 多种物种的蛋白质组。AlphaFold2 的核心是基于神经网络的计算模型,结合了蛋白质的物理和生物学知识,利用多序列比对(MSA)所设计出的深度学习算法。

1. Docker 环境

命令如下:

# 启动 nvidia-docker 环境
nvidia-docker run -it --name [docker-name] -v [...]:[...] [nvidia-base]:v1.0

# 配置 conda
bash Miniconda3-py38_4.10.3-Linux-x86_64.sh
source ~/.bashrc

# 创建 alphafold 环境
conda create --name alphafold python==3.8
conda update -n base conda
conda activate alphafold

# 配置 conda 库
conda install -y -c conda-forge openmm==7.5.1 cudatoolkit==11.2.2 pdbfixer
conda install -y -c bioconda hmmer hhsuite==3.3.0 kalign2

# 再次更新
conda install -y -c conda-forge openmm==7.7.0 
conda install -y -c conda-forge pdbfixer==1.8.1

# 配置 pip 库, tensorflow-gpu 或 tensorflow-cpu,根据机器选择
pip install absl-py==1.0.0 biopython==1.79 chex==0.0.7 dm-haiku==0.0.9 dm-tree==0.1.6 immutabledict==2.0.0 jax==0.3.25 ml-collections==0.1.0 numpy==1.21.6 pandas==1.3.4 protobuf==3.20.1 scipy==1.7.0 tensorflow-gpu==2.9.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/

# 配置 pip jax 库
pip install --upgrade --no-cache-dir jax==0.3.25 jaxlib==0.3.25+cuda11.cudnn805 -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html

# 导出环境
export alphafold_path="$(pwd)"

# 下载配置文件
wget -q -P $alphafold_path/alphafold/common/ https://git.scicore.unibas.ch/schwede/openstructure/-/raw/7102c63615b64735c4941278d92b554ec94415f8/modules/mol/alg/src/stereo_chemical_props.txt

# 配置 openmm.patch
git checkout v2.3.1  # 最新版本删除 openmm.patch
cd ~/miniconda3/envs/alphafold/lib/python3.8/site-packages/
patch -p0 < $alphafold_path/docker/openmm.patch

测试 Tensorflow 是否安装成功,以及 GPU 是否启动:

python3  # 进入命令行

import tensorflow as tf
 
print(f"is_gpu_available: {tf.test.is_gpu_available()}")
gpu_device_name = tf.test.gpu_device_name()
print(f"gpu_device_name: {gpu_device_name}")

from tensorflow.python.client import device_lib 
# 列出所有的本地机器设备
local_device_protos = device_lib.list_local_devices()
# 只打印GPU设备
print(x) for x in local_device_protos if x.device_type == 'GPU'

保存和复用 docker,命令如下:

# 保存环境
docker ps -l
docker commit [container-id] af2:v1.0
docker save af2:v1.0 | gzip > af2_v1.tar.gz

# 加载环境
docker image load -i af2_v1.tar.gz
nvidia-docker run -it --name [docker-name] -v [...]:[...] af2:v1.0

如需更换 Tensorflow 的 CPU 或 GPU 配置,先卸载再更新即可:

pip uninstall tensorflow-cpu tensorflow-estimator tensorflow-io-gcs-filesystem
pip install tensorflow-gpu==2.9.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/

Bug1: OpenMM 相关 Bug

如遇 OpenMM Bug,以及解决方案:

openmm Bug 1: conda install -c conda-forge openmm==7.7.0

Traceback (most recent call last):
  File "run_alphafold.py", line 41, in <module>
    from alphafold.relax import relax
  File "alphafold/relax/relax.py", line 18, in <module>
    from alphafold.relax import amber_minimize
  File "alphafold/relax/amber_minimize.py", line 25, in <module>
    from alphafold.relax import cleanup
  File "alphafold/relax/cleanup.py", line 23, in <module>
    from openmm import app
ModuleNotFoundError: No module named 'openmm'

pdbfixer Bug2:conda install -c conda-forge pdbfixer==1.8.1

Traceback (most recent call last):
  File "run_alphafold.py", line 41, in <module>
    from alphafold.relax import relax
  File "alphafold/relax/relax.py", line 18, in <module>
    from alphafold.relax import amber_minimize
  File "alphafold/relax/amber_minimize.py", line 25, in <module>
    from alphafold.relax import cleanup
  File "alphafold/relax/cleanup.py", line 22, in <module>
    import pdbfixer
  File "/root/miniconda3/envs/alphafold/lib/python3.8/site-packages/pdbfixer/__init__.py", line 2, in <module>
    from .pdbfixer import PDBFixer
  File "/root/miniconda3/envs/alphafold/lib/python3.8/site-packages/pdbfixer/pdbfixer.py", line 38, in <module>
    from simtk.openmm.app.internal.pdbstructure import PdbStructure
ModuleNotFoundError: No module named 'simtk.openmm.app.internal'

参考:PSP - 替换 MSA 数据库 以及 OpenMM 和 mmCIF 异常

Bug2: Collecting package metadata (repodata.json): / Killed

参考:StackOverflow - Collecting package metadata (repodata.json): / Killed

显存 RAM 过低,提升显存 0.5GB 至 8GB + 即可。

2. 配置数据库

参考:官方GitHub:GitHub - deepmind/alphafold

2.1 AlphaFold2 Model

目前,最新版本 (2023.5.7) 是 alphafold_params_2022-12-06

下载命令:

mkdir params
cd params/
wget -P . https://storage.googleapis.com/alphafold/alphafold_params_2022-12-06.tar   # 5.2G
tar --extract --verbose --file="alphafold_params_2022-12-06.tar" --directory="." --preserve-permissions

模型参数说明:

PSP - 配置 AlphaFold2 的高效运行环境

2.2 Small BFD

下载命令:

mkdir small_bfd
cd small_bfd/
wget -P . https://storage.googleapis.com/alphafold-databases/reduced_dbs/bfd-first_non_consensus_sequences.fasta.gz  # 9.6G
gunzip "bfd-first_non_consensus_sequences.fasta.gz"

2.3 数据库配置

其他数据库,根据工程自行下载。将已有的数据库,配置到一个数据文件夹中,可以使用软连接的方式,即 ln -s,数据库如下:

bfd/					# 多个文件的相同前缀
mgnify/				# fa文件,64G
params/   		# 模型参数,最新版本2022-12-06,monomer,monomer-ptm,multimer_v3
pdb70/				# 文件夹
pdb_mmcif/		# 文件夹
pdb_seqres/		# multimer使用txt,208M
small_bfd/		# bfd的fasta文件,17G
uniprot/			# fasta文件,98G,注意版本信息
uniref30/			# 多个文件的相同前缀,注意日期
uniref90/			# fasta文件,59G

3. 配置脚本

修改运行脚本:run_alphafold.sh

修改数据库配置,注意 uniref30 的不同版本信息,配置如下:

# Path and user config (change me if required)
uniref90_database_path="$data_dir/uniref90/uniref90.fasta"
uniprot_database_path="$data_dir/uniprot/uniprot.fasta"
mgnify_database_path="$data_dir/mgnify/mgy_clusters_2022_05.fa"
bfd_database_path="$data_dir/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt"
small_bfd_database_path="$data_dir/small_bfd/bfd-first_non_consensus_sequences.fasta"
# uniref30_database_path="$data_dir/uniref30/UniRef30_2021_03"
uniref30_database_path="$data_dir/uniref30/uniclust30_2018_08"
pdb70_database_path="$data_dir/pdb70/pdb70"
pdb_seqres_database_path="$data_dir/pdb_seqres/pdb_seqres.txt"
template_mmcif_dir="$data_dir/pdb_mmcif/mmcif_files"
obsolete_pdbs_path="$data_dir/pdb_mmcif/obsolete.dat"

修改 MSA 搜索工具位置,配置如下:

hhblits_binary_path="/root/miniconda3/envs/alphafold/bin/hhblits"
hhsearch_binary_path="/root/miniconda3/envs/alphafold/bin/hhsearch"
jackhmmer_binary_path="/root/miniconda3/envs/alphafold/bin/jackhmmer"
kalign_binary_path="/root/miniconda3/envs/alphafold/bin/kalign"

修改 数据库位置 与 最大模版日期,配置如下:

if [[ "$data_dir" == "" || "$output_dir" == "" || "$fasta_path" == "" || "$max_template_date" == "" ]] ; then
    data_dir=[my data dir];
    max_template_date="2022-04-01";
fi

搜索 MSA 的过程,在 AF2 推理运行中,占用时间较长,修改优先使用已有 MSA 文件,如下:

if [[ "$use_precomputed_msas" == "" ]] ; then
    use_precomputed_msas="true"
fi

4. 配置源码

加速搜索 MSA 的过程,需要修改 CPU 数量,默认是8个。查询 Linux 的 GPU 数量,如下:

lscpu | grep 'CPU(s):' | head -1 | awk '{print $2}'   # 查询 CPU 数量

修改文件 alphafold/data/tools/hhblits.py,如下:

                binary_path: str,
                databases: Sequence[str],
-               n_cpu: int = 4,
+               n_cpu: int = [your num],
                n_iter: int = 3,
                e_value: float = 0.001,
                maxseq: int = 1_000_000,

修改文件 alphafold/data/tools/hmmsearch.py,如下:

       cmd = [
           self.binary_path,
           '--noali',  # Don't include the alignment in stdout.
-          '--cpu', '8'
+          '--cpu', '[your num]'
       ]
       # If adding flags, we have to do so before the output and input:
       if self.flags:

修改文件 alphafold/data/tools/jackhmmer.py,如下:

                binary_path: str,
                database_path: str,
-               n_cpu: int = 8,
+               n_cpu: int = [your num],
                n_iter: int = 1,
                e_value: float = 0.0001,
                z_value: Optional[int] = None,

也可以修改 monomer_casp14 模式的默认模型,由 monomer 替换为 monomer_ptm,如下:

-MODEL_PRESETS['monomer_casp14'] = MODEL_PRESETS['monomer']
+# MODEL_PRESETS['monomer_casp14'] = MODEL_PRESETS['monomer']
+MODEL_PRESETS['monomer_casp14'] = MODEL_PRESETS['monomer_ptm']

其中,pTM 模型:

pTM models were fine-tuned to produce pTM (predicted TM-score) and (PAE) predicted aligned error values alongside their structure predictions.

pTM 模型经过微调 (基于monomer),在进行结构预测时,产生 pTM(预测的TM得分)和 PAE(预测的对齐误差)值。

5. 推理序列

推理命令:

bash run_alphafold.sh -o mydata/output/ -f mydata/query.fasta -m monomer_casp14 -c full_dbs

seq:

>dummy_sequence
GWSTELEKHREELKEFLKKEGITNVEIRIDNGRLEVRVEGGTERLKRFLEELRQKLEKKGYTVDIKIE

主要输出:

  1. pdb,最好的结构是 ranked_0.pdb
  2. ranking_debug.json,pdb排名
  3. msas,搜索出的 MSA 文件,即mgnify_hits.stopdb_hits.hhrbfd_uniref_hits.a3muniref90_hits.sto 等。
  4. timings.json,运行耗时。

其中 ranking_debug.json,如下:

{
    "plddts": {
        "model_1_pred_0": 86.26850453604357,
        "model_2_pred_0": 85.06505646965638,
        "model_3_pred_0": 87.40822765097714,
        "model_4_pred_0": 84.71053426936133,
        "model_5_pred_0": 82.69870802756033
    },
    "order": [
        "model_3_pred_0",
        "model_1_pred_0",
        "model_2_pred_0",
        "model_4_pred_0",
        "model_5_pred_0"
    ]
}

其中timings.json,如下:

{
    "features": 103.40737819671631,
    "process_features_model_1_pred_0": 3.8775177001953125,
    "predict_and_compile_model_1_pred_0": 116.74437546730042,
    "relax_model_1_pred_0": 11.63992977142334,
    "process_features_model_2_pred_0": 1.3910491466522217,
    "predict_and_compile_model_2_pred_0": 114.51620531082153,
    "relax_model_2_pred_0": 5.43536114692688,
    "process_features_model_3_pred_0": 1.1890630722045898,
    "predict_and_compile_model_3_pred_0": 87.88086938858032,
    "relax_model_3_pred_0": 5.768261194229126,
    "process_features_model_4_pred_0": 1.1486437320709229,
    "predict_and_compile_model_4_pred_0": 87.95040488243103,
    "relax_model_4_pred_0": 5.295060873031616,
    "process_features_model_5_pred_0": 1.2103533744812012,
    "predict_and_compile_model_5_pred_0": 88.90721249580383,
    "relax_model_5_pred_0": 5.518966436386108
}

输出的最优PDB结构,如下:

PSP - 配置 AlphaFold2 的高效运行环境

参考

  1. GitHub - deepmind/alphafold
  2. GitHub - kalininalab/alphafold_non_docker

源码如下:文章来源地址https://www.toymoban.com/news/detail-440122.html

#!/bin/bash

usage() {
        echo ""
        echo "Please make sure all required parameters are given"
        echo "Usage: $0 <OPTIONS>"
        echo "Required Parameters:"
        echo "-d <data_dir>         Path to directory of supporting data"
        echo "-o <output_dir>       Path to a directory that will store the results."
        echo "-f <fasta_paths>      Path to FASTA files containing sequences. If a FASTA file contains multiple sequences, then it will be folded as a multimer. To fold more sequences one after another, write the files separated by a comma"
        echo "-t <max_template_date> Maximum template release date to consider (ISO-8601 format - i.e. YYYY-MM-DD). Important if folding historical test sets"
        echo "Optional Parameters:"
        echo "-g <use_gpu>          Enable NVIDIA runtime to run with GPUs (default: true)"
        echo "-r <run_relax>        Whether to run the final relaxation step on the predicted models. Turning relax off might result in predictions with distracting stereochemical violations but might help in case you are having issues with the relaxation stage (default: true)"
        echo "-e <enable_gpu_relax> Run relax on GPU if GPU is enabled (default: true)"
        echo "-n <openmm_threads>   OpenMM threads (default: all available cores)"
        echo "-a <gpu_devices>      Comma separated list of devices to pass to 'CUDA_VISIBLE_DEVICES' (default: 0)"
        echo "-m <model_preset>     Choose preset model configuration - the monomer model, the monomer model with extra ensembling, monomer model with pTM head, or multimer model (default: 'monomer')"
        echo "-c <db_preset>        Choose preset MSA database configuration - smaller genetic database config (reduced_dbs) or full genetic database config (full_dbs) (default: 'full_dbs')"
        echo "-p <use_precomputed_msas> Whether to read MSAs that have been written to disk. WARNING: This will not check if the sequence, database or configuration have changed (default: 'false')"
        echo "-l <num_multimer_predictions_per_model> How many predictions (each with a different random seed) will be generated per model. E.g. if this is 2 and there are 5 models then there will be 10 predictions per input. Note: this FLAG only applies if model_preset=multimer (default: 5)"
        echo "-b <benchmark>        Run multiple JAX model evaluations to obtain a timing that excludes the compilation time, which should be more indicative of the time required for inferencing many proteins (default: 'false')"
        echo ""
        exit 1
}

while getopts ":d:o:f:t:g:r:e:n:a:m:c:p:l:b:" i; do
        case "${i}" in
        d)
                data_dir=$OPTARG
        ;;
        o)
                output_dir=$OPTARG
        ;;
        f)
                fasta_path=$OPTARG
        ;;
        t)
                max_template_date=$OPTARG
        ;;
        g)
                use_gpu=$OPTARG
        ;;
        r)
                run_relax=$OPTARG
        ;;
        e)
                enable_gpu_relax=$OPTARG
        ;;
        n)
                openmm_threads=$OPTARG
        ;;
        a)
                gpu_devices=$OPTARG
        ;;
        m)
                model_preset=$OPTARG
        ;;
        c)
                db_preset=$OPTARG
        ;;
        p)
                use_precomputed_msas=$OPTARG
        ;;
        l)
                num_multimer_predictions_per_model=$OPTARG
        ;;
        b)
                benchmark=$OPTARG
        ;;
        esac
done

# Parse input and set defaults
if [[ "$data_dir" == "" || "$output_dir" == "" || "$fasta_path" == "" || "$max_template_date" == "" ]] ; then
    usage
fi

if [[ "$benchmark" == "" ]] ; then
    benchmark=false
fi

if [[ "$use_gpu" == "" ]] ; then
    use_gpu=true
fi

if [[ "$gpu_devices" == "" ]] ; then
    gpu_devices=0
fi

if [[ "$run_relax" == "" ]] ; then
    run_relax="true"
fi

if [[ "$enable_gpu_relax" == "" ]] ; then
    enable_gpu_relax="true"
fi

if [[ "$enable_gpu_relax" == true && "$use_gpu" == true ]] ; then
    use_gpu_relax="true"
else
    use_gpu_relax="false"
fi

if [[ "$num_multimer_predictions_per_model" == "" ]] ; then
    num_multimer_predictions_per_model=5
fi

if [[ "$model_preset" == "" ]] ; then
    model_preset="monomer"
fi

if [[ "$model_preset" != "monomer" && "$model_preset" != "monomer_casp14" && "$model_preset" != "monomer_ptm" && "$model_preset" != "multimer" ]] ; then
    echo "Unknown model preset! Using default ('monomer')"
    model_preset="monomer"
fi

if [[ "$db_preset" == "" ]] ; then
    db_preset="full_dbs"
fi

if [[ "$db_preset" != "full_dbs" && "$db_preset" != "reduced_dbs" ]] ; then
    echo "Unknown database preset! Using default ('full_dbs')"
    db_preset="full_dbs"
fi

if [[ "$use_precomputed_msas" == "" ]] ; then
    use_precomputed_msas="false"
fi

# This bash script looks for the run_alphafold.py script in its current working directory, if it does not exist then exits
current_working_dir=$(pwd)
alphafold_script="$current_working_dir/run_alphafold.py"

if [ ! -f "$alphafold_script" ]; then
    echo "Alphafold python script $alphafold_script does not exist."
    exit 1
fi

# Export ENVIRONMENT variables and set CUDA devices for use
# CUDA GPU control
export CUDA_VISIBLE_DEVICES=-1
if [[ "$use_gpu" == true ]] ; then
    export CUDA_VISIBLE_DEVICES=0

    if [[ "$gpu_devices" ]] ; then
        export CUDA_VISIBLE_DEVICES=$gpu_devices
    fi
fi

# OpenMM threads control
if [[ "$openmm_threads" ]] ; then
    export OPENMM_CPU_THREADS=$openmm_threads
fi

# TensorFlow control
export TF_FORCE_UNIFIED_MEMORY='1'

# JAX control
export XLA_PYTHON_CLIENT_MEM_FRACTION='4.0'

# Path and user config (change me if required)
uniref90_database_path="$data_dir/uniref90/uniref90.fasta"
uniprot_database_path="$data_dir/uniprot/uniprot.fasta"
mgnify_database_path="$data_dir/mgnify/mgy_clusters_2022_05.fa"
bfd_database_path="$data_dir/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt"
small_bfd_database_path="$data_dir/small_bfd/bfd-first_non_consensus_sequences.fasta"
uniref30_database_path="$data_dir/uniref30/UniRef30_2021_03"
pdb70_database_path="$data_dir/pdb70/pdb70"
pdb_seqres_database_path="$data_dir/pdb_seqres/pdb_seqres.txt"
template_mmcif_dir="$data_dir/pdb_mmcif/mmcif_files"
obsolete_pdbs_path="$data_dir/pdb_mmcif/obsolete.dat"

# Binary path (change me if required)
hhblits_binary_path=$(which hhblits)
hhsearch_binary_path=$(which hhsearch)
jackhmmer_binary_path=$(which jackhmmer)
kalign_binary_path=$(which kalign)

command_args="--fasta_paths=$fasta_path --output_dir=$output_dir --max_template_date=$max_template_date --db_preset=$db_preset --model_preset=$model_preset --benchmark=$benchmark --use_precomputed_msas=$use_precomputed_msas --num_multimer_predictions_per_model=$num_multimer_predictions_per_model --run_relax=$run_relax --use_gpu_relax=$use_gpu_relax --logtostderr"

database_paths="--uniref90_database_path=$uniref90_database_path --mgnify_database_path=$mgnify_database_path --data_dir=$data_dir --template_mmcif_dir=$template_mmcif_dir --obsolete_pdbs_path=$obsolete_pdbs_path"

binary_paths="--hhblits_binary_path=$hhblits_binary_path --hhsearch_binary_path=$hhsearch_binary_path --jackhmmer_binary_path=$jackhmmer_binary_path --kalign_binary_path=$kalign_binary_path"

if [[ $model_preset == "multimer" ]]; then
	database_paths="$database_paths --uniprot_database_path=$uniprot_database_path --pdb_seqres_database_path=$pdb_seqres_database_path"
else
	database_paths="$database_paths --pdb70_database_path=$pdb70_database_path"
fi

if [[ "$db_preset" == "reduced_dbs" ]]; then
	database_paths="$database_paths --small_bfd_database_path=$small_bfd_database_path"
else
	database_paths="$database_paths --uniref30_database_path=$uniref30_database_path --bfd_database_path=$bfd_database_path"
fi

# Run AlphaFold with required parameters
$(python $alphafold_script $binary_paths $database_paths $command_args)

到了这里,关于PSP - 配置 AlphaFold2 的高效运行环境的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • PSP - 开源可训练的蛋白质结构预测框架 OpenFold 的环境配置

    欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/132334671 Paper: OpenFold: Retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization OpenFold: 重新训练 AlphaFold2 揭示对于学习机制和泛化能力的新见解 OpenFold 是可训练的开源实

    2024年02月12日
    浏览(37)
  • Netty为什么高效,为什么这么受欢迎?

    上篇文章通过 Java NIO 的处理流程与 Netty 的总体流程比较,并结合 Netty 的源码,可以更加清晰地理解Netty。本文将结合源码详细解析Netty的高效和强大功能的设计原理,学习 Netty 是如何实现其卓越的性能和功能特性,也希望可以在日后工作中利用到 Netty 的设计思想。 我们先看

    2024年02月12日
    浏览(70)
  • PSP - 蛋白质结构预测 OpenFold Multimer 模型训练参数与配置

    欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/132575709 OpenFold Multimer 是用于预测蛋白质多聚体结构的计算方法。基于OpenFold 的单体预测框架,利用深度学习技术,结合序列、进化和互作信息,来推断蛋白质之间的相互作用界面和空间排列

    2024年02月10日
    浏览(59)
  • 构建高效Docker环境:网络配置全指南

    在当今快速发展的软件开发领域,Docker作为一种高效的容器化技术,已经成为许多开发和运维团队的首选。Docker不仅提高了应用部署的效率,还通过其独特的网络配置,极大地简化了容器间的通信和数据共享。对于中高级开发者来说,深入理解和掌握Docker网络配置不仅是提升

    2024年02月22日
    浏览(38)
  • Webstorm 舒适高效配置,打造提高生产率环境 (html, vue, uniapp)

    目录 1. 主题护眼配置 2. 字体 JetBrains Mono 3. webStrom 好用插件-大大提高生产效率插件 3.1图标插件 3.2 Git提交记录 3.3彩色括号 3.4 高亮括号 3.5 右侧代码小地图 3.6 正则插件 3.7 activate-power-mode-x 3.8 Tabnine AI Code Completion 3.9 ESLint代码检查插件 3.10 BrowseWordAtCaret高亮选中所有相同词

    2024年02月08日
    浏览(48)
  • pycharm的环境配置运行

    刚开始用pycharm打开一个项目文件时,由于没有配置文件, 程序是不能运行的 运行的按钮为灰色 此时在项目浏览器中右键点击项目主程序,在下拉菜单中选择运行, 快捷键为ctrl+shift+F10在配置中会自动添加以主程序为名称的配置 这时可以编辑配置选择自己配置的虚拟环境就

    2024年02月12日
    浏览(54)
  • IIS配置PHP运行环境

    控制面板-〉程序-〉打开或关闭Windows功能 勾选“Internet 信息服务” 勾选“IIS 管理控制台” 勾选“CGI”

    2024年02月16日
    浏览(48)
  • MAC配置JDK运行环境

    作为一名JAVA开发人员,入手一台新电脑后免不了要配置JDK运行环境,这是本人在入手一台MAC后配置JDK的实操记录文章,希望可以对使用MAC的小伙伴有所帮助。 苹果的mac book目前常见的有两种芯片的 一种是intel芯片的,一种是Apple Silicon的。为了更好的体现不同芯片的性能,各

    2024年02月15日
    浏览(86)
  • phpstorm配置php运行环境

    1,首先安装phpstrom,按照提示的步骤一步一步来就行 2,新建一个项目然后在里面找到这个位置 3,找到php所在的位置,找不到就直接在搜索框中搜索 4,这里要配置php的运行环境,一定要记得自己安装软件的位置 5,选择好后先apply再确定完成。 6,phpstorm汉化插件,在pluging中

    2024年02月07日
    浏览(51)
  • VsCode配置Kotlin运行环境

    目录 需求 前置条件 步骤 问题 一 二 结果 设备上有一个 Android Studio 但是太大了, 于是就想着用 VS Code 配置一个轻量级的,而且 VS Code里面好多插件我用着也比较舒服. Java JDK1.8 或者 11  别的版本没试过 有基于Android Studio 的 Kotlinc的环境 在VS Code中下载 Code Runner 和 Kotlin Language 两

    2023年04月22日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包