使用SwinUnet训练自己的数据集

这篇具有很好参考价值的文章主要介绍了使用SwinUnet训练自己的数据集。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

参考博文: https://blog.csdn.net/qq_37652891/article/details/123932772

数据集准备

遥感图像多类别语义分割,总共分为7类(包括背景)
使用SwinUnet训练自己的数据集
image:
使用SwinUnet训练自己的数据集
label_rgb
使用SwinUnet训练自己的数据集
label(这里并不是全黑,其中的类别取值为0,1,2,3,4,5,6),此后的训练使用的也是这样的数据
使用SwinUnet训练自己的数据集

数据地址
百度云:https://pan.baidu.com/s/1zZHnZfBgVWxs6TJW4yjeeQ

提取码:2022

SwinUNet代码地址

数据集处理

数据集的imagelabel,这个数据集应该提供了rgb格式标签和包含0,1,2,3,4,5,6值的标签,SwinUNet使用的是包含0,1,2,3,4,5,6的标签图像;

1. 数据集

数据集存放在SwinUNet根目录下,image中是原图像,label中是标签图像(共7类,其标签取值为0,1,2,3,4,5,6,7);
如果使用其他数据集,要注意标签的取值。比如如果是二分类。即标签0255,需要换成01

—SwinUNet
---------configs
---------img_datas
---------------train
--------------------image
--------------------label
---------------test
--------------------image
--------------------label

2. 在SwinUnet根目录下创建npz.py文件,运行npz.py文件

import glob
import cv2
import numpy as np
import os

def npz(im, la, s):
    images_path = im
    labels_path = la
    path2 = s
    images = os.listdir(images_path)
    for s in images:
        image_path = os.path.join(images_path, s)
        label_path = os.path.join(labels_path, s)

        image = cv2.imread(image_path)
        image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
		# 标签由三通道转换为单通道
        label = cv2.imread(label_path, flags=0)
        # 保存npz文件 
        np.savez(path2+s[:-4]+".npz",image=image,label=label)

npz('./img_datas/train/image/', './img_datas/train/label/', './data/Synapse/train_npz')

npz('./img_datas/test/image/', './img_datas/test/label/', './data/Synapse/test_vol_h5')

3. 在SwinUnet根目录下创建txt.py文件,运行txt.py文件

目的是生成./list/list_Synapse/train.txt./list/list_Synapse/test_vol.txt文件

import os
def write_name(np, tx):
    #npz文件路径
    files = os.listdir(np)
    #txt文件路径
    f = open(tx, 'w')
    for i in files:
        #name = i.split('\\')[-1]
        name = i[:-4]+'\n'
        f.write(name)
        
write_name('./data/Synapse/train_npz', './lists/lists_Synapse/train.txt')
write_name('./data/Synapse/test_vol_h5', './lists/lists_Synapse/test_vol.txt')

4. 下载预训练权重,放在SwinUnet目录下的pretrained_ckpt文件夹下

链接:https://pan.baidu.com/s/1-hYwJRlr95Fv08e9AEARww
提取码:2022

使用SwinUnet训练自己的数据集

修改网络

1. 修改train.py文件

使用SwinUnet训练自己的数据集
比较重要的是类别数量,其他视情况而定
使用SwinUnet训练自己的数据集

2. 修改./datasets/dataset_synapse.py文件

使用SwinUnet训练自己的数据集

3. 修改trainer.py文件

此处不知道为什么
使用SwinUnet训练自己的数据集

4. 运行代码

这些信息可以作为超参传入,如果不能,那么可以使用default=的方式写入默认值
使用SwinUnet训练自己的数据集
如果设置好啦默认值,那么运行python train.py就可以啦
使用SwinUnet训练自己的数据集文章来源地址https://www.toymoban.com/news/detail-440268.html

到了这里,关于使用SwinUnet训练自己的数据集的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用pyskl的stgcn++训练自己的数据集

    https://github.com/kennymckormick/pyskl 包含多种动作分类的模型,感谢大佬 训练过程主要参考项目中的 examples/extract_diving48_skeleton/diving48_example.ipynb 但是我一开始不知道这个文件,从网上查不到太多的资料,走了不少弯路,这里就把我训练的过程分享一下。 这里使用的是Weizmann数据

    2024年02月03日
    浏览(35)
  • SwinIR Transformer训练教程(使用自己的数据集)

    SwinIR Transformer图像超分辨率重建训练教程 文章:https://arxiv.org/abs/2108.

    2024年02月13日
    浏览(39)
  • 使用YOLOv8训练自己的【目标检测】数据集

    随着深度学习技术在计算机视觉领域的广泛应用,行人检测和车辆检测等任务已成为热门研究领域。然而,实际应用中,可用的预训练模型可能并不适用于所有应用场景。 例如,虽然预先训练的模型可以检测出行人,但它无法区分“好人”和“坏人”,因为它没有接受相关的

    2024年04月10日
    浏览(54)
  • 深度学习-yolo-fastestV2使用自己的数据集训练自己的模型

    虽然说yolo-fastestV2在coco数据集上map只达到了24.1,但是应付一些类别少的问题还是可以的。主要是这个速度是真的香!简单来说就是一个快到飞起的模型。 github地址如下:yolo-fastestV2 yolo-fastestV2采用了轻量化网络shufflenetV2为backbone,笔者在这里就不详解yolo-fastestV2了,只讲怎么

    2024年02月06日
    浏览(51)
  • Yolov8改进模型后使用预训练权重迁移学习训练自己的数据集

    yolov8 github下载 1、此时确保自己的数据集格式是yolo 格式的(不会的去搜教程转下格式)。 你的自制数据集文件夹摆放 主目录文件夹摆放 自制数据集data.yaml文件路径模板 2、把data.yaml放在yolov8–ultralytics-datasets文件夹下面 3、然后模型配置改进yaml文件在主目录新建文件夹v8_

    2024年02月06日
    浏览(52)
  • 手把手教你使用Segformer训练自己的数据

    使用Transformer进行语义分割的简单高效设计。 将 Transformer 与轻量级多层感知 (MLP) 解码器相结合,表现SOTA!性能优于SETR、Auto-Deeplab和OCRNet等网络 相比于ViT,Swin Transfomer计算复杂度大幅度降低,具有输入图像大小线性计算复杂度。Swin Transformer随着深度加深,逐渐合并图像块来

    2024年01月20日
    浏览(76)
  • 使用CycleGAN训练自己制作的数据集,通俗教程,快速上手

    总结了使用 CycleGAN 训练自己制作的数据集,这里的教程例子主要就是官网给出的斑马变马,马变斑马,两个不同域之间的相互转换。教程中提供了官网给的源码包和我自己调试优化好的源码包,大家根据自己的情况下载使用,推荐学习者下载我提供的源码包,可以少走一些弯

    2024年02月03日
    浏览(57)
  • TensorFlow学习:使用官方模型和自己的训练数据进行图片分类

    教程来源:清华大佬重讲机器视觉!TensorFlow+Opencv:深度学习机器视觉图像处理实战教程,物体检测/缺陷检测/图像识别 注: 这个教程与官网教程有些区别,教程里的api比较旧,核心思想是没有变化的。 上一篇文章 TensorFlow学习:使用官方模型进行图像分类、使用自己的数据

    2024年02月08日
    浏览(47)
  • 通过AutoDL使用yolov5.7训练自己的数据集

    AutoDL 选择基础镜像 创建之后 点击 开机 ,也可在更多里面选择无卡模式开机(此模式不能训练,但是可以上传文件且更便宜)。开机之后,上传代码可通过xshell工具或者可以通过快捷工具JupyterLab。我两种方法都来演示一遍。yolov5代码 复制登录指令 回车后会要求输入密码,

    2024年02月05日
    浏览(59)
  • Stable Diffusion:使用自己的数据集微调训练LoRA模型

    由于本人水平有限,难免出现错漏,敬请批评改正。 更多精彩内容,可点击进入YOLO系列专栏、自然语言处理 专栏或我的个人主页查看 基于DETR的人脸伪装检测 YOLOv7训练自己的数据集(口罩检测) YOLOv8训练自己的数据集(足球检测) YOLOv5:TensorRT加速YOLOv5模型推理 YOLOv5:I

    2024年02月12日
    浏览(84)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包