RFID安全的三次认证

这篇具有很好参考价值的文章主要介绍了RFID安全的三次认证。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一.RFID介绍

RFID是Radio Frequency Identification的缩写,即射频识别。它是一种通过用电磁场收集数据并从远距离自动识别物体的技术。它使用无线电波来将信息从一个电子标签传输到读卡器中,而不需要直接接触。这些标签可以嵌入到物品中或附加到物品表面,以便在物流、库存管理、安全等领域进行实时跟踪和监控。

二.RFID的安全性

对于RFID系统的安全性检测,主要需要考虑以下几个方面:

  1. 数据隐私:在RFID系统中传输的数据可能包含敏感信息,比如个人身份、财务信息等。因此需要采取措施保护数据的机密性和隐私性。
  2. 认证与授权:RFID系统应该能够识别合法的读写器以及标签,并防止未经授权的设备或者用户进行读写操作。
  3. 安全协议:RFID系统使用安全协议来保护通信过程中的数据完整性、认证和加密。常见的安全协议有TLS/SSL、AES、HMAC等。
  4. 抗干扰性:RFID系统应该具备一定的抗干扰能力,防止意外干扰或恶意干扰导致数据传输错误或系统瘫痪。
  5. 漏洞检测:定期对RFID系统进行漏洞检测,寻找可能存在的安全漏洞并及时修复。

在实际应用中,RFID系统的安全性检测需要根据具体情况综合考虑上述各个因素,制定相应的安全策略和措施,确保系统的安全性和稳定性。

三.三次认证的过程

1.图片表述

RFID安全的三次认证

2.文字描述

RFID安全的三次认证

四.使用算法

本篇博客是基于上篇的RSA算法进行加密和解密的,如想详细了解RSA算法请点击RSA算法

RSA 算法是一种非对称加密算法,它可以用于保护数字通信的机密性和完整性。RSA 算法是由三位数学家(Rivest、Shamir 和 Adleman)在 1977 年提出的,取名来自他们的姓氏首字母。

RSA 算法的关键在于使用了两个大素数,并将其乘积作为公开的密钥中的一个参数,而这两个大素数只有私钥持有者才知道。计算机很容易地进行大数相乘,但却难以从乘积中分解出两个大素数。因此,如果某个人要发送加密信息给另一个人,则需要使用接收方的公钥对信息进行加密,只有接收方才能使用他们拥有的私钥进行解密。

RSA 算法的安全性基于大数分解问题,即寻找两个大质数的乘积。目前,没有已知的快速算法可以有效地解决大数分解问题,因此 RSA 算法被认为是一种安全可靠的加密技术。

除了保证机密性,RSA 算法还可以用于数字签名、密钥交换等领域。例如,在数字签名中,发送方可以使用自己的私钥对消息进行签名,接收方则使用发送方的公钥来验证签名是否有效。在密钥交换中,双方可以使用 RSA 算法来协商出一个会话密钥,从而实现对称加密方式的安全通信。

五.python代码实现

import random
import base64

# 定义一个函数用于生成指定位数的素数
def creat_number(num1,num2):
    while True:
        p = random.randint(num1,num2)           #随机产生一个指定位数的整数
        if checknum(p):
            return p
        #一直while循环,直到产生的数是素数

# 判断是否为素数
def checknum(n):
    if n < 2:
        return False
    for i in range(2, int(n ** 0.5) + 1):
        if n % i == 0:
            return False
    #如果循环结束还没有数与之整除,这个数就是素数
    return True

# 计算扩展欧几里得算法(求逆元)
def niyuan(a, b):
    if a == 0:
        return (b, 0, 1)
    else:
        g, y, x = niyuan(b % a, a)
        return (g, x - (b // a) * y, y)
#参数a:模数,参数b:需求逆元的数,返回值中g是a和b的最大公约数,x - (b // a) * y这个式子的值就是我们所求的逆元

#产生公钥和私钥函数
def creatkey(p,q):
    n=p*q                  #计算n=p*q
    ln=(p-1)*(q-1)         # 计算φ(n) = (p-1) * (q-1)
    e = 65537              # 选择一个与ln互质的整数e作为公钥指数,一般都选取65537相当于约定俗成
    # 计算d = e^(-1) mod ln,即e模ln的逆元
    _, d, _ = niyuan(e, ln)
    # 确保d在合法范围内(1 < d < ln)
    d = d % ln
    if d <= 1:
        d += ln
    # 返回公钥(n, e)和私钥d
    return n, e, d

#加密函数
def encrypt(message, n, e):
    encrypted_list = []
    for char in message:
        encrypted_num = pow(ord(char), e, n)       #利用pow函数进行RSA加密
        encrypted_char = chr(encrypted_num)        #转化为ASCll字符
        encrypted_list.append(encrypted_char)      #存入列表
    encrypted_message = ''.join(encrypted_list)    #拼接成一个字符串
    # 进行 Base64 编码
    base64_data = base64.b64encode(encrypted_message.encode('utf-8')).decode('ascii')
    print(base64_data)          #编码结果即密文
    return base64_data


#解密函数
def decrypt(value,n,d):
    # 进行 Base64 解码
    binary_data = base64.b64decode(value)        #解码得到二进制数字
    binary_string = binary_data.decode('utf-8')  #换成ASCll字符串
    decrypted_list = []
    for i in range(len(binary_string)):
        decrypted_num = pow(ord(binary_string[i]), d, n)        #利用pow函数进行RSA解密
        decrypted_char = chr(decrypted_num)                     #换成字符串
        decrypted_list.append(decrypted_char)
    decrypted_message = ''.join(decrypted_list)
    return decrypted_message

#拼接字符串
def strnum(a,b):
    str1=str(a)
    str2=str(b)
    result=str1+str2
    return result
#把两个随机大数拼接成字符串进行加密,增加复杂性

#测试代码
a=input("请输入共享密钥产生素数的范围起点:")
num1=int(a)
b=input("请输入共享密钥产生素数的范围终点:")
num2=int(b)
p=creat_number(num1,num2)
q=creat_number(num1,num2)
print("现在阅读器开始发送查询口令")
RB=random.randint(10000,99999)
print("应答器产生的随机大数RB:",RB)
RA=random.randint(10000,99999)
print("阅读器产生的随机大数RA:",RA)
str1=strnum(RA,RB)
print("阅读器要发送的明文数据块:",str1)
n,e,d=creatkey(p,q)
print("阅读器加密数据块TOKEN AB:",end='')
str2=encrypt(str1,n,e)
print("应答器收到TOKEN AB后进行解密")
str3=decrypt(str2,n,d)
RA1=int(str3[0:5])
RB1=int(str3[-5:])
print("应答器解密后得到RA=",RA1,"应答器解密后得到RB=",RB1)
if RB1==RB:
    print("阅读器获得了应答器的确认")   #验证成功,此时应答器确认收到的RA也是正确的
print("--------------------------------------------------")
RB2=random.randint(10000,99999)    #从新产生RB1,进行阅读器对应答器的认证
print("应答器重新生成的RB1:",RB2)
lum=strnum(RB2,RA1)                #应答器只有收到的RA1
print("应答器的加密数据块TOKEN BA:",end='')
lum1=encrypt(lum,n,e)
print("阅读器收到TOKEN BA进行解密")
lum2=decrypt(lum1,n,d)
RA2=int(lum2[-5:])
print("阅读器收到TOKEN BA进行解密得到RA1:",RA2)
if RA1==RA:
    print("阅读器对应答器认证成功")

六.运行结果

RFID安全的三次认证文章来源地址https://www.toymoban.com/news/detail-440427.html

到了这里,关于RFID安全的三次认证的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • TCP的三次握手、四次挥手

    首先我们要知道建立连接的目的是什么,我们是为了可靠的传输数据。那既然是可靠的传输数据,我们必须保证客户端和服务端都能正常的发送和接收数据,如果某一方不能正常的发送或者接收数据,那整个数据的传输就不能成功,也就不可靠。 三次握手 1.第一次握手:第一

    2024年02月10日
    浏览(34)
  • 近代中国的三次思想文化运动

    第一次思想解放潮流是1898年维新派与顽固势力的论战。论战的内容有:要不要变法,要不要兴民权、实行君主立宪,要不要提倡西学、改变教育制度。此次论争是资本主义思想同封建主义思想的正面交锋,此后形成中国近代思想解放的潮流,推动了维新变法运动的发展。 时

    2024年02月07日
    浏览(26)
  • TCP的三次握手四次挥手

    TCP的三次握手和四次挥手实质就是TCP通信的连接和断开。 三次握手:为了对每次发送的数据量进行跟踪与协商,确保数据段的发送和接收同步,根据所接收到的数据量而确认数据发送、接收完毕后何时撤消联系,并建立虚连接。 四次挥手:即终止TCP连接,就是指断开一个T

    2024年02月11日
    浏览(29)
  • TCP的三次握手和4次挥手

    最开始,人们考虑到将网络信息的呼唤与回应进行规范,达成一种公认的协议,就好像没有交通规则的路口设定交通规则。 人们设计出完美的OSI协议,这个协议包含七个层次由下到上分别是: 物理层,数据链路层,网络层,传输层,会话层,表示层,应用层。 大家都觉得很

    2024年03月21日
    浏览(40)
  • Wireshark抓包分析TCP的三次握手

    一、TCP三次握手连接建立过程     Step1:客户端发送一个SYN数据包(SYN=1,Seq=X,ACK=0)给服务端,请求进行连接,这是第一次握手;     Step2:服务端收到请求并且允许连接的话,就会发送一个SYN+ACK的数据包(SYN=1,Seq=Y,ACK=X+1)给发送端,告诉它,可以通讯了,并且让客户

    2024年02月08日
    浏览(33)
  • TCP的三次握手以及四次断开

    TCP的三次握手和四次断开,就是TCP通信建立连接以及断开的过程 目录 【1】TCP的三次握手过程  ----  TCP建立连接的过程 【2】TCP的四次挥手  ----  TCP会话的断开 注意: 三次握手的过程 :         通信双方发送请求序列号,并且确认收到序列号的过程 第一次握手 :      

    2024年02月14日
    浏览(35)
  • TCP的三次握手与四次挥手

    参考文章:https://blog.csdn.net/qq_38950316/article/details/81087809 在介绍三次握手与四次挥手之前我们先来了解一下TCP的头部结构是什么样的。 TCP头部的最大长度为60字节,其中包括 TCP报文固定长度20字节+可变字节(最大40字节) ,具体结构如下: 在认识三次握手与四次挥手之前我们必

    2023年04月09日
    浏览(32)
  • 一文读懂TCP的三次握手(详细图解)

    在学习TCP三次握手的过程前,首先熟悉几个缩写简称: TCB 传输控制块,打开后服务器 / 客户端进入监听( LISTEN )状态 SYN TCP报文标志位,该位为 1 时表示发起一个新连接 ACK TCP 报文标志位,该位为1时,确认序号有效 ,确认接收到消息。 TCP 规定,在连接建立后所有报文的传

    2024年02月09日
    浏览(47)
  • TCP 的三次握手和四次挥手

    Java 面试题 第一次握手 :客户端向服务端发送SYN包。报文中标志位SYN=1,序列号seq=x(x为随机整数)。此时客户端进入了  SYN_SEND 同步已发送状态。 第二次握手 :服务端回复客户端SYN+ACK包。报文中标志位SYN=1,标志位ACK=1,序列号seq=y(y为随机整数),确认号ack=x+1(x为客户

    2024年01月20日
    浏览(42)
  • TCP的三次握手和四次挥手

    既然我们文章要说的是TCP的三次握手,和四次挥手,那么肯定是说的连接,也不是说的不其他的。那么它这个连接的过程说的是什么呢? 我们还是从图中理解,这样比较好理解, TCP第一次握手:服务端的TCP进程先创建传输控制块TCB,准备接受客户端进程的连接请求,然后服

    2024年02月01日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包