Linux系统下CUDA和cuDNN环境配置

这篇具有很好参考价值的文章主要介绍了Linux系统下CUDA和cuDNN环境配置。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本人配置环境:linux服务器,ubantu18,显卡驱动11.0,安装CUDA11.0和cuDNN8.2.1。

一、安装CUDA11.0

1、先多找几篇博客,了解大概的流程,避免踩坑。

2、官网下载,复制官网命令到服务器下载。https://developer.nvidia.com/cuda-toolkit-archive

Linux系统下CUDA和cuDNN环境配置

 3、输入命令,再按i键,进入vim的编辑模式。

sudo vim ~/.bashrc

4、在末尾添加如下两行,注意里面的路径要换成自己的版本,再按esc键退出vim编辑模式,并输入  :wq  保存并退出

export PATH=/usr/local/cuda-11.0/bin${PATH:+:${PATH}}

 export LD_LIBRARY_PATH=/usr/local/cuda-11.0/lib64\
 ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

5、以下命令激活配置,并使用nvcc -V查看配置效果,如图表示成功。

source ~/.bashrc

Linux系统下CUDA和cuDNN环境配置

 二、安装cuDNN8.2.1

1、官网下载和CUDA对应的版本 https://developer.nvidia.com/rdp/cudnn-archive

2、解压文件

tar -xzvf cudnn-11.3-linux-x64-v8.2.1.32.tgz

3、执行如下四条命令,注意换成自己的版本。

sudo cp cuda/include/cudnn*.h /usr/local/cuda-11.0/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-11.0/lib64
sudo chmod a+r /usr/local/cuda-11.0/include/cudnn*.h sudo chmod a
+r /usr/local/cuda-11.0/lib64/libcudnn*

4、使用如下命令查看cuDNN的版本号

cat /usr/local/cuda-11.0/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

Linux系统下CUDA和cuDNN环境配置

至此安装完成。文章来源地址https://www.toymoban.com/news/detail-440713.html

到了这里,关于Linux系统下CUDA和cuDNN环境配置的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习—Python、Cuda、Cudnn、Torch环境配置搭建

    近期由于毕设需要使用Yolo,于是经过两天捣腾,加上看了CSDN上各位大佬的经验帖后,成功搭建好了GPU环境,并能成功使用。因而在此写下这次搭建的历程。 万事开头难,搭建环境很费时间,如果一开始版本不对应,到后面就要改来改去,很麻烦。首先要注意以下事项: 1.

    2024年02月11日
    浏览(211)
  • 最新版本的Anaconda环境配置、Cuda、cuDNN以及pytorch环境一键式配置流程

    本教程是最新的深度学习入门环境配置教程,跟着本教程可以帮你解决入门深度学习之前的环境配置问题。同时,本教程拒绝琐碎,大部分以图例形式进行教程。这里我们安装的都是最新版本~ 1.1 下载 首先,进入Aanconda下载地址:https://www.anaconda.com/download/ 如果嫌下载慢的话,

    2024年02月13日
    浏览(69)
  • MiniConda、CUDA、CUDnn以及pytorch环境的配置以及坑

    首先需要说明一下,我想安装的是Pytorch GPU版,所以需要安装CUDA toolkit 以及CUDnn,若您无需GPU版本 则无需安装这两个。 Conda其实就是一个包或则称之为库的管理工具,类似于安装python自带的pip管理工具,其实我感觉它并没有pip好用,但是有一点还是挺好用的,就是Conda删除某

    2024年02月06日
    浏览(108)
  • 【Win11+RTX3050显卡】cuda+cudnn+tensorflow 环境配置

    【Win11+RTX3050显卡】cuda+cudnn+tensorflow 环境配置 CUDA 11.5 cudnn 8.3.3 tensorflow-gpu 2.6 CUDA:CUDA 即英伟达的显卡并行计算框架 nvidia-smi 可以查看,每个版本的CUDA都是基于一定版本的驱动建立的,所以它对驱动的最低版本是有要求的 cudnn:cudnn 是基于CUDA架构的神经网络库 是专门用于神

    2024年02月15日
    浏览(67)
  • pytorch环境配置(装cuda、cudnn)win10+cuda10.1+cudnn7.6.5+torch1.7.1 && 集显装pytorch

    为了装这个走了太多坑了,所以想写一篇具体教程,有缘人看吧,希望能解决你的问题。(第一次写文章啥也不懂,万一冒犯了啥,麻烦告知我改) 我anaconda很早就装过了,所以这里就不细说了。 电脑配置:win10+1050显卡(很久前买的电脑的) 一些弯路:现在的pytorch安装是可

    2024年02月04日
    浏览(57)
  • linux下显卡驱动,cuda,cudnn的安装

    通过上表可以发现,如果要使用CUDA11.1,那么需要将显卡的驱动更新至455.23或以上(Linux x86_64环境)。 我还没有安装显卡驱动 下载驱动,直接去NVIDIA官网下载:https://www.nvidia.cn/Download/index.aspx?lang=cn sudo bash NVIDIA-Linux-x86_64-535.54.03.run 第一个报错 需要禁用nouveau驱动 在开机选项

    2024年02月10日
    浏览(38)
  • 在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境(新手必看!简单可行!)

    本人最近接触深度学习,想在服务器上配置深度学习的环境,看了很多资料后总结出来了对于新手比较友好的配置流程,创建了一个关于深度学习环境配置的专栏,包括从anaconda到cuda到pytorch的一系列操作,专栏中的另外两篇文章如下,如果有不对的地方欢迎大家批评指正!

    2023年04月15日
    浏览(65)
  • 深度学习环境配置Anaconda+cuda+cudnn+PyTorch——李沐大神《动手学深度学习》环境配置(巨详细,持续迭代)

    Anaconda+cuda+cudnn+Pytorch(手把手教你安装深度学习环境)——这里是GPU+PyTorch版本 国内AI教学体系发展较晚,很多喜欢AI的同学都得不到系统的学习。当然我们也不否认国内一些优质的AI领域的课程和教学资料,这里我们主要推荐李沐大神推出的《动手学深度学习》,这门课程最初

    2024年02月15日
    浏览(79)
  • Orin 安装CUDA CUDNN TensorRT Opencv和输入法的环境配置

    有两种方法可以安装CUDA环境 在刷机完成的Orin,执行如下命令: 注释–如果在执行第三行命令,报错的话,先查看nvidia-l4t-apt-source.list 将其修改为 修改完后,重新执行上面那三行命令 CUDA 检查是否安装成功 运行命令 输出结果 如果报错,需要把nvcc添加到环境变量,方法如下

    2024年02月10日
    浏览(42)
  • Linux和Windows系统下:安装Anaconda、Paddle、tensorflow、pytorch,GPU[cuda、cudnn]、CPU安装教学,以及查看CPU、GPU内存使用情况

    Anaconda安装:Anaconda是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。使用Anaconda可以通过创建多个独立的Python环境,避免用户的Python环境安装太多不同版本依赖导致冲突。 Anaconda 是一个免费开源的 Python 和 R 语言的发行版本,用于计算科学,Anac

    2024年02月04日
    浏览(64)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包