【线性代数】向量组的线性相关性

这篇具有很好参考价值的文章主要介绍了【线性代数】向量组的线性相关性。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一、图解向量组的线性相关性

1. 向量组线性相关的定义

 2.三维空间中向量组线性相关的几何意义

3.向量组线性相关与齐次线性方程组

二、向量组线性相关的基本结论

三、向量组线性相关性总结


一、图解向量组的线性相关性

1. 向量组线性相关的定义

【线性代数】向量组的线性相关性

 2.三维空间中向量组线性相关的几何意义

做出向量组A与向量组B的图如下:

【线性代数】向量组的线性相关性

旋转图形得到:

【线性代数】向量组的线性相关性 旋转后发现,向量组A可以形成一个平面,即向量组A线性相关;

向量组B,不能形成一个平面,即向量组B线性无关;

3.向量组线性相关与齐次线性方程组

向量组线性相关,即齐次线性方程组有非零解。

【线性代数】向量组的线性相关性

【线性代数】向量组的线性相关性

二、向量组线性相关的基本结论

 【线性代数】向量组的线性相关性

根据上面的定理:

向量组线性相关的充分必要条件是:R(A)=n

向量组线性无关的充分必要条件是:R(A)<n

【线性代数】向量组的线性相关性

做出几何图形如下:

【线性代数】向量组的线性相关性

在三维向量空间中,向量组A形成了一个平面,向量组B中的a4位于这个平面之外。

因为给向量组A增加了一个向量得到向量组B,R(A)<=3,R(B)<=3,

又因为向量组A的个数为3,向量组B的个数为4,则有 R(B)<4.

总结如下:

【线性代数】向量组的线性相关性

【线性代数】向量组的线性相关性

三、向量组线性相关性总结

(1) 两个向量线性相关的充分必要条件是对应分量成比例,几何意义是两向量共线;

(2)三个向量线性相关的几何意义是三向量共面;

(3)向量组线性相关的充分必要条件是R(A)<m,线性无关的充分必要条件是R(A)=m;

(4)向量组线性相关,则就是对应齐次线性方程组有非零解;

(5)m个n维向量组,若m>n,则向量组一定线性相关;

(6)若向量组线性相关,则向量组【线性代数】向量组的线性相关性线性相关;文章来源地址https://www.toymoban.com/news/detail-441299.html

到了这里,关于【线性代数】向量组的线性相关性的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数的学习和整理20,关于向量/矩阵和正交相关,相似矩阵等

    目录 1 什么是正交 1.1 正交相关名词 1.2 正交的定义 1.3 正交向量 1.4 正交基 1.5 正交矩阵的特点 1.6 正交矩阵的用处 orthogonal set 正交向量组 正交变换 orthogonal matrix 正交矩阵 orthogonal basis 正交基 orthogonal decomposition 正交分解 正交的定义:内积为0 正交一定线性无关 其实不共线也

    2024年02月09日
    浏览(59)
  • 线性代数的学习和整理20,关于向量/矩阵和正交相关,相似矩阵等(草稿)

    目录 1 什么是正交 1.1 正交相关名词 1.2 正交的定义 1.3 正交向量 1.4 正交基 1.5 正交矩阵的特点 1.6 正交矩阵的用处 orthogonal set 正交向量组 正交变换 orthogonal matrix 正交矩阵 orthogonal basis 正交基 orthogonal decomposition 正交分解 正交的定义:内积为0 正交一定线性无关 其实不共线也

    2024年02月09日
    浏览(47)
  • 计算两个或多个向量之间的相关性(Matlab 实现)

    本文首次在公众号【零妖阁】上发表,为了方便阅读和分享,我们将在其他平台进行自动同步。由于不同平台的排版格式可能存在差异,为了避免影响阅读体验,建议如有排版问题,可前往公众号查看原文。感谢您的阅读和支持! 两个随机变量 x x x 、 y y y 的 Pearson 线性相关

    2024年02月04日
    浏览(42)
  • 线性代数(三) 线性方程组&向量空间

    如何利用行列式,矩阵求解线性方程组。 用矩阵方程表示 齐次线性方程组:Ax=0; 非齐次线性方程组:Ax=b. 可以理解 齐次线性方程组 是特殊的 非齐次线性方程组 如何判断线性方程组的解 其中R(A)表示矩阵A的秩 B表示A的增广矩阵 n表示末知数个数 增广矩阵 矩阵的秩 秩r= 未知

    2024年02月13日
    浏览(46)
  • 线性代数 --- 向量的长度

    从代数的角度定义向量的长度 :       正如我在另外一篇文章中(见本文底部的推荐链接)提到的,两个向量(这是默认是两个列向量)的内积,可以表示为也可以表示为。现在我们考虑一种特殊情形,现在我们有一个向量v=(1,2,3),那么这个向量自己和自己的内积是多少呢

    2024年02月02日
    浏览(43)
  • 线性代数之向量组

    文章目录 前言 一、定义与定理 1、定义 1.1、n维向量 1.2、线性组合 1.3、线性表示(出)   1.4、线性相关 1.5、线性无关 2、判别线性相关的七大定理 2.1、定理一: 2.2、定理二: 2.3、定理三: 2.4、定理四: 2.5、定理五: 2.6、定理六: 2.7、定理七: 二、具体型向量关系 1.与

    2024年03月26日
    浏览(50)
  • 线性代数基础【3】向量

    一、基本概念 ①向量 ②向量的模(长度) ③向量的单位化 ④向量的三则运算 ⑤向量的内积 二、向量运算的性质 (一)向量三则运算的性质 α + β = β + α α + (β + γ) = (α + β) + γ k (α + β) = kα + kβ (k + l) α = kα + lα (二)向量内积运算的性质 (α , β) = (β , α) = α^Tβ = β^Tα (α , α)

    2024年02月03日
    浏览(50)
  • 线性代数基础--向量

    目录 向量的概念 基本概念 抽象概念 向量的意义  几何意义 物理意义 欧式空间 特点和性质  行向量与列向量 行向量 列向量 两者的关系 向量的基本运算与范数 向量的基本运算 向量的加法 数乘运算(实数与向量相乘) 转置 向量的范数 向量的模与内积 向量的模 向量的内积

    2024年02月11日
    浏览(57)
  • 线性代数(一)——向量基础

    线性代数的核心是向量的加和乘两种运算的组合,本篇博客为线性代数的一个引子,主要从向量、线性组合和矩阵逐步引出线性代数的相关知识。 首先介绍的是向量相关,向量是基础。 已知列向量: υ = [ v 1 v 2 ] boldsymbol{upsilon}=left[begin{matrix} v_1 \\\\ v_2end{matrix} right] υ =

    2024年03月21日
    浏览(50)
  • 机器学习-线性代数-向量、基底及向量空间

    理解 直观理解 行向量:把数字排成一行A = [ 4   5 ] [4~ 5] [ 4   5 ] 列向量:把数字排成一列A =   [ 4 5 ] left [ begin{matrix} 4 \\\\ 5 \\\\ end{matrix} right ]   [ 4 5 ​ ] 几何意义 默认在基底条件下(直角坐标系)中的坐标表示的一个点,也可以理解以原点为起点,到目标终点A的有向线段

    2024年02月06日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包