基于Saber的升压电源设计

这篇具有很好参考价值的文章主要介绍了基于Saber的升压电源设计。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

摘要:在如今这个信息时代,社会飞速发展,大家沟通的方式越来越便捷,电子产品成为了人们生活中不可缺少的一部分。随着电子技术的发展,电子产品日新月异。其中,电子产品的核心之一——电源,越来越受到人们的关注,电源是所有电子产品的心脏,电子产品60%的故障率来自电源,电源也越来越追求功耗小,输出电压稳定,转化效率高。开关电源是一种高频化电能转换装置,是电源供应器的一种,TL494是一种典型的开关电源脉宽调制(PWM)控制芯片。在本报告中,TL494用来产生电压为12V的PWM波,再由BOOST电路进行升压处理,将电压升为24V。经检验,其具有高转换率和工作频率高等优点,在实际操作中应用广泛。

关键词:TL494 BOOST电路 开关电源 Saber

一、电路的基本原理

1.1 TL494脉宽调制电路

TL494芯片于1980年代初由德州仪器公司设计并推出,推出后立刻得到市场的广泛接受,尤其是在PC机的ATX半桥电源上。直至今日,仍有相当比例的PC机电源基于TL494芯片。多年来,作为最廉价的双端PWM芯片,TL494在双端拓扑,如推挽和半桥中应用极多。由于其较低的工作频率以及单端的输出端口特性,它常配合功率双极性晶体管(BJT)使用,如用于配合功率MOSFET则需外加电路。TL494集成了全部的脉宽调制电路,片内置线性锯齿波振荡器,控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。当把死区时间控制输入端接上固定的电压(范围在0-3.3V之间)即能在输出脉冲上产生附加的死区时间。脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V变化到3.5V时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。两个误差放大器具有从-0.3V到-2.0V的共模输入范围,这可能从电源的输出电压和电流察觉得到。误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。当比较器CT放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的双稳触发器进行计时,同时停止输出管Q1和Q2的工作。若输出控端连接到参考电压源,那么调制脉冲交替输出至两个输出晶体管,输出频率等于脉冲振荡器的一半。如果工作于单端状态,且最大占空比小于50%时输出驱动信号分别从晶体管Q1或Q2取得。输出变压器一个反馈绕组及二极管提供反馈电压。在单端工作模式下,当需要更高的驱动电流输出,亦可将Q1和Q2并联使用,这时,需将输出模式控制脚接地以关闭双稳触发器。这种状态下,输出的脉冲频率将等于振荡器的频率。TL494内置一个5.0V的基准电压源,使用外置偏置电路时,可提供高达10mA的负载电流,在典型的0—70℃温度范围50mV温漂条件下,该基准电压源能提供±5%的精确度。TL494的振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:

基于Saber的升压电源设计

1.2 BOOST升压电路

BOOST升压电源是利用开关管开通和关断的时间比率,维持稳定输出的一种开关电源,它以小型、轻量和高效率的特点被广泛应用在各行业电子设备找那个,是不可缺少的一种电源架构。

Boost升压电路主要由控制IC、功率电感和mosfet基本元件组成,下图即为一个BOOST基本架构框图。

基于Saber的升压电源设计

图1 BOOST基本架构框图

和BUCK一样,L依然是储能元件,当开关闭合时,A点的电压为0,Vi直接给电感L充电,充电电流路径见下图,开关导通时间dt=占空比*开关周期=D*T。

基于Saber的升压电源设计

当开关断开时,L中存储的能量会通过二极管,给负载放电;同时,Vi也会通过二极管给负载放电,二者叠加,实现升压,放电时间dt=(1-占空比)*开关周期=(1-D)*T。

基于Saber的升压电源设计

在开关闭合和断开的两个时间内,电感充电和放电是一样的,有人称之为电感的幅秒特性。整理得:

基于Saber的升压电源设计

二、所采用的器件

2.1 TL494芯片

TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可以通过外部的一个电阻和一个电容进行调节。输出电容的脉冲其实是通过电容上的正极性锯齿波电压与另外2个控制信号进行比较来实现。功率输出管Q1和Q2受控于或非门。当双稳触压器的时钟信号为低电平时才会被通过,即只有在锯齿波电压大于控制信号期间才会被选通。当控制信号增大,输出脉冲的宽度将减小。TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。TL494芯片引脚配线图如图2,内部电路框图如图3所示,时序图见图4。

基于Saber的升压电源设计

图2 TL494芯片引脚配线图

基于Saber的升压电源设计

图3 内部电路框图

基于Saber的升压电源设计

图4 TL494时序图

2.2元件清单

表1 元器件清单

序号

名称

型号规格

数量

1

脉宽调制(PWM)控制芯片

TL494

1

2

NMOS管

IRF120

1

3

二极管

d

1

4

电阻

24Ω

1

5

电阻

48Ω

1

6

电阻

80Ω

1

7

电阻

240Ω

1

8

电阻

480Ω

1

9

电阻

1KΩ

2

10

电阻

10kΩ

1

11

电阻

12KΩ

1

12

电阻

50kΩ

1

13

电容

0.01uF

2

14

电容

5uF

1

15

电容

10uF

1

16

电容

100uF

1

17

电感

130uH

1

18

电感

200uH

1

19

电感

300uH

1

20

电感

450mH

1

21

电感

500mH

1

三、仿真原理图

3.1 PWM波形产生电路

基于Saber的升压电源设计

图5 PWM波形产生电路图

3.2 BOOST升压电路

基于Saber的升压电源设计

图6 BOOST升压电路图

四、仿真结果与分析

4.1 PWM

将TL494的输入端8、11脚加上+12V直流电压,测试TL494输出端9、10脚波形如图5,该波形接近理想的脉冲波形,满足设计要求。

基于Saber的升压电源设计

4.2 输出电流为500mA

当输出电流为500mA时,电阻为24V/500mA=48Ω时,输出的电流电压波形图如图所示:

基于Saber的升压电源设计

4.3 输出电流为300mA

当输出电流为300mA时,电阻为24V/300mA=80Ω时,输出的电流电压波形图如图所示:

基于Saber的升压电源设计

4.4 输出电流为100mA

当输出电流为100mA时,电阻为24V/100mA=240Ω时,输出的电流电压波形图如图 所示:

基于Saber的升压电源设计

4.5 输出电流为50mA

当输出电流为300mA时,电阻为24V/300mA=80Ω时,输出的电流电压波形图如图所示:

基于Saber的升压电源设计

文章若有不完善之处,欢迎批评指正!😋文章来源地址https://www.toymoban.com/news/detail-441368.html

到了这里,关于基于Saber的升压电源设计的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于同步整流技术的Buck开关电源设计方法

                                                                 典型的Buck电路                                                           同步整流的Buck电路 目录 基于同步整流技术的Buck开关电源设计方法  摘要  0 引言  1 原理分析  3 实验

    2024年02月16日
    浏览(36)
  • 基于单片机的多路输出数控直流稳压电源设计与实现

    本次设计中数控稳压电源的设计要求如下: (1)数控稳压电源系统输入电压为15V,输出0-12V,最大输出电流为2A; (2)输出电压纹波不大于200mV; (3)可对输出电压进行预置;可对输出电压进行加减,其步进电压为0.1V; (4)实现人机交互,通过按键可对设定电压与输出电

    2024年02月07日
    浏览(47)
  • 【毕设】基于单片机的开关电源设计(源码+电路图+全套资料+说明文档)

    本内容是基于单片机的开关电源设计 包含: 1 设计源码 2 电路图 3 配套程序 4 全套说明资料 (私聊获取资料) 选用STM32F407单片机作为控制芯片,前段整流部分使用直流电源给入,主控电路输出PWM波信号,即稳定的电压值,经增强驱动力后,再经BUCK电路输出需要的电压电流值

    2024年01月21日
    浏览(44)
  • 基于STM32的智能巡检小车系统设计--STM32最小系统、直流电机、直流电源模块设计

    作者:车 邮箱:692604135@qq.com 学校:西安工程大学硕士研究生 方向:机器视觉、图像分割、深度学习 在介绍具体实现功能之前,需要介绍以下模块。 本课题选择的单片机是ST(意法半导体)开发的STM32F407VET6。 这是一款采用Corte-M4为内核的高性能32位ARM微控制器。该芯片支持

    2024年02月10日
    浏览(50)
  • 基于STM32的单相可调逆变电源设计(能输出稳定的电压电流,也可扩展为三相输出)

    本篇文章主要介绍的是我前段时间做的一个基于STM32H750VB为主控芯片的单相可调逆变电源,额定输入为10V-80V,额定输出电压为220V,额定输出电流为5A。做这个逆变电源的时候还是遇到了很多困难,首先是网上这方面的资料并不多,ACDC的资料不少,但是DCAC的资料少得可怜,在

    2024年02月14日
    浏览(47)
  • FPGA选型--电源设计(详细讲解了电源设计过程)

    备注:本次设计以 XCZU28DR-2FFVG1517E 为例,其他系列的电源设计类似。 赛灵思 Zynq® UltraScale+™ RFSoC 支持 -2 和 -1 速度等级,其中 -2E 器件性能最高。-2LE 和 -1LI 器件可以 0.85V 或 0.72V 的 VCCINT 电 压工作,专为实现更低的最大静态功耗而设计。使用以 VCCINT = 0.85V 工作的 -2LE 和 -1

    2024年02月03日
    浏览(40)
  • 【电源设计】13开关电源仿真与应用

    本章主要是大概了解一下开关电源仿真与应用,开关电源仿真设计全过程:包括需求分析/控制/PWM。 因为本人并不是专门做电源的,此部分内容仅作了解,并不专门去学习。 便携式储能逆变器 指标 规格介绍: 输入电压:19.6~29.4V 输出范围:100 ~ 120VAC//60HZ 输出指标:Vthd 5%

    2024年02月06日
    浏览(39)
  • 【电源设计】06正激式开关电源

    本文主要介绍正激式开关电源相关内容。 之前一直找不到硬件题目来练习,老羡慕人家做软件的,最近发现 牛客居然有硬件相关题目 ! 这是链接,牛客网刷题(点击可以跳转),而且它 登陆后会自动保存刷题记录,重新登录时不会又原地重练 ,我觉得这一点还挺好的。 个人

    2024年01月23日
    浏览(54)
  • 板卡设计+硬件每日学习十个知识点(44)23.8.24 (检测单元设计,接口部分设计,板卡电源输入设计,电源检测电路)

    答: 首先要为检测单元的单片机设计一个最小系统板,包括时钟、供电、调试JTAG、复位。 然后设计检测单元GD32的功能电路,包括温度监测、电压监测、电流监测、FPGA启动检测、PS侧的复位控制、LED状态灯。 最后是和PL侧使用I2C通信的通信电路。 这些让我设计的话,可能得

    2024年02月11日
    浏览(61)
  • STM32核心板设计——电源设计

    RTC电源管脚为V BAT, 电源范围为1.8~3.6V,主要用于RTC时钟的供电, RTC在大部分场合用于保存一些重要的参数,比如在电脑主板上用于保存boss的信息, 如果这个电源丢了将导致无法重启,在单片机中低功耗设备常常也会使用这个RTC进行定时的唤醒功能,在普通的MCU中常用于做实

    2024年02月09日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包