算法训练第三十八天|动态规划理论基础、509. 斐波那契数 、70. 爬楼梯 、 746. 使用最小花费爬楼梯

这篇具有很好参考价值的文章主要介绍了算法训练第三十八天|动态规划理论基础、509. 斐波那契数 、70. 爬楼梯 、 746. 使用最小花费爬楼梯。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

动态规划理论基础

参考:https://programmercarl.com/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html

动态规划是什么

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。

所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的,

举一个背包问题的例子,例如:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

动态规划中dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。

但如果是贪心呢,每次拿物品选一个最大的或者最小的就完事了,和上一个状态没有关系。

所以贪心解决不了动态规划的问题。

其实大家也不用死扣动规和贪心的理论区别,后面做做题目自然就知道了。

而且很多讲解动态规划的文章都会讲最优子结构啊和重叠子问题啊这些,这些东西都是教科书的上定义,晦涩难懂而且不实用。

大家知道动规是由前一个状态推导出来的,而贪心是局部直接选最优的,对于刷题来说就够用了。

上述提到的背包问题,后序会详细讲解。

动态规划的解题步骤

做动规题目的时候,很多同学会陷入一个误区,就是以为把状态转移公式背下来,照葫芦画瓢改改,就开始写代码,甚至把题目AC之后,都不太清楚dp[i]表示的是什么。

这就是一种朦胧的状态,然后就把题给过了,遇到稍稍难一点的,可能直接就不会了,然后看题解,然后继续照葫芦画瓢陷入这种恶性循环中。

状态转移公式(递推公式)是很重要,但动规不仅仅只有递推公式。

对于动态规划问题,我将拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!

  • 确定dp数组(dp table)以及下标的含义
  • 确定递推公式
  • dp数组如何初始化
  • 确定遍历顺序
  • 举例推导dp数组

为什么要先确定递推公式,然后在考虑初始化呢?

因为一些情况是递推公式决定了dp数组要如何初始化!

后面的讲解中我都是围绕着这五点来进行讲解。

可能刷过动态规划题目的同学可能都知道递推公式的重要性,感觉确定了递推公式这道题目就解出来了。

其实 确定递推公式 仅仅是解题里的一步而已!

一些同学知道递推公式,但搞不清楚dp数组应该如何初始化,或者正确的遍历顺序,以至于记下来公式,但写的程序怎么改都通过不了。

后序的讲解的大家就会慢慢感受到这五步的重要性了。

509. 斐波那契数

题目链接:509. 斐波那契数
参考:https://programmercarl.com/0509.%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91%E6%95%B0.html

题目描述

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。

示例 1:

  • 输入:2
  • 输出:1
  • 解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

  • 输入:3
  • 输出:2
  • 解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:

  • 输入:4
  • 输出:3
  • 解释:F(4) = F(3) + F(2) = 2 + 1 = 3

提示:

  • 0 <= n <= 30

思路

动态规划

动规五部曲:

这里我们要用一个一维dp数组来保存递归的结果

  1. 确定dp数组以及下标的含义

dp[i]的定义为:第i个数的斐波那契数值是dp[i]

  1. 确定递推公式

为什么这是一道非常简单的入门题目呢?

因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];

  1. dp数组如何初始化

题目中把如何初始化也直接给我们了,如下:

dp[0] = 0;
dp[1] = 1;
  1. 确定遍历顺序

从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的

  1. 举例推导dp数组

按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:

0 1 1 2 3 5 8 13 21 34 55

如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。

以上我们用动规的方法分析完了,C++代码如下:

class Solution {
public:
    int fib(int N) {
        if (N <= 1) return N;
        vector<int> dp(N + 1);
        dp[0] = 0;
        dp[1] = 1;
        for (int i = 2; i <= N; i++) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[N];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

当然可以发现,我们只需要维护两个数值就可以了,不需要记录整个序列。

代码如下:

class Solution {
public:
    int fib(int N) {
        if (N <= 1) return N;
        int dp[2];
        dp[0] = 0;
        dp[1] = 1;
        for (int i = 2; i <= N; i++) {
            int sum = dp[0] + dp[1];
            dp[0] = dp[1];
            dp[1] = sum;
        }
        return dp[1];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)
递归解法

本题还可以使用递归解法来做

代码如下:

class Solution {
public:
    int fib(int N) {
        if (N < 2) return N;
        return fib(N - 1) + fib(N - 2);
    }
};
  • 时间复杂度:O(2^n)
  • 空间复杂度:O(n),算上了编程语言中实现递归的系统栈所占空间

这个递归的时间复杂度大家画一下树形图就知道了,如果不清晰的同学,可以看这篇:通过一道面试题目,讲一讲递归算法的时间复杂度!

总结

简单题要掌握方法论,所以还是要按动规五部曲严格来做,将在后面起大作用。

70. 爬楼梯

题目链接:70. 爬楼梯
参考:https://programmercarl.com/0070.%E7%88%AC%E6%A5%BC%E6%A2%AF.html

题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

  • 输入: 2
  • 输出: 2
  • 解释: 有两种方法可以爬到楼顶。
    – 1 阶 + 1 阶
    – 2 阶

示例 2:

  • 输入: 3
  • 输出: 3
  • 解释: 有三种方法可以爬到楼顶。
    – 1 阶 + 1 阶 + 1 阶
    – 1 阶 + 2 阶
    – 2 阶 + 1 阶

思路

本题大家如果没有接触过的话,会感觉比较难,多举几个例子,就可以发现其规律。

爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。

那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。

所以到第三层楼梯的状态可以由第二层楼梯 和 到第一层楼梯状态推导出来,那么就可以想到动态规划了。

我们来分析一下,动规五部曲:

定义一个一维数组来记录不同楼层的状态

  1. 确定dp数组以及下标的含义

dp[i]: 爬到第i层楼梯,有dp[i]种方法

  1. 确定递推公式

如何可以推出dp[i]呢?

从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。

首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。

还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。

那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!

所以dp[i] = dp[i - 1] + dp[i - 2] 。

在推导dp[i]的时候,一定要时刻想着dp[i]的定义,否则容易跑偏。

这体现出确定dp数组以及下标的含义的重要性!

  1. dp数组如何初始化

在回顾一下dp[i]的定义:爬到第i层楼梯,有dp[i]中方法。

那么i为0,dp[i]应该是多少呢,这个可以有很多解释,但基本都是直接奔着答案去解释的。

例如强行安慰自己爬到第0层,也有一种方法,什么都不做也就是一种方法即:dp[0] = 1,相当于直接站在楼顶。

但总有点牵强的成分。

那还这么理解呢:我就认为跑到第0层,方法就是0啊,一步只能走一个台阶或者两个台阶,然而楼层是0,直接站楼顶上了,就是不用方法,dp[0]就应该是0.

其实这么争论下去没有意义,大部分解释说dp[0]应该为1的理由其实是因为dp[0]=1的话在递推的过程中i从2开始遍历本题就能过,然后就往结果上靠去解释dp[0] = 1。

从dp数组定义的角度上来说,dp[0] = 0 也能说得通。

需要注意的是:题目中说了n是一个正整数,题目根本就没说n有为0的情况。

所以本题其实就不应该讨论dp[0]的初始化!

我相信dp[1] = 1,dp[2] = 2,这个初始化大家应该都没有争议的。

所以我的原则是:不考虑dp[0]如何初始化,只初始化dp[1] = 1,dp[2] = 2,然后从i = 3开始递推,这样才符合dp[i]的定义。

  1. 确定遍历顺序
    从递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的

  2. 举例推导dp数组

举例当n为5的时候,dp table(dp数组)应该是这样的
算法训练第三十八天|动态规划理论基础、509. 斐波那契数 、70. 爬楼梯 、 746. 使用最小花费爬楼梯
如果代码出问题了,就把dp table 打印出来,看看究竟是不是和自己推导的一样。

此时大家应该发现了,这不就是斐波那契数列么!

唯一的区别是,没有讨论dp[0]应该是什么,因为dp[0]在本题没有意义!

以上五部分析完之后,C++代码如下:

// 版本一
class Solution {
public:
    int climbStairs(int n) {
        if (n <= 1) return n; // 因为下面直接对dp[2]操作了,防止空指针
        vector<int> dp(n + 1);
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++) { // 注意i是从3开始的
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
};
  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)

当然依然也可以,优化一下空间复杂度,代码如下:

// 版本二
class Solution {
public:
    int climbStairs(int n) {
        if (n <= 1) return n;
        int dp[3];
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++) {
            int sum = dp[1] + dp[2];
            dp[1] = dp[2];
            dp[2] = sum;
        }
        return dp[2];
    }
};
  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) O(1) O(1)

后面将讲解的很多动规的题目其实都是当前状态依赖前两个,或者前三个状态,都可以做空间上的优化,但我个人认为面试中能写出版本一就够了哈,清晰明了,如果面试官要求进一步优化空间的话,我们再去优化。

因为版本一才能体现出动规的思想精髓,递推的状态变化。

拓展

这道题目还可以继续深化,就是一步一个台阶,两个台阶,三个台阶,直到 m个台阶,有多少种方法爬到n阶楼顶。

这又有难度了,这其实是一个完全背包问题,但力扣上没有这种题目,所以后续我在讲解背包问题的时候,今天这道题还会从背包问题的角度上来再讲一遍。 如果想提前看一下,可以看这篇:70.爬楼梯完全背包版本

这里我先给出我的实现代码:

class Solution {
public:
    int climbStairs(int n) {
        vector<int> dp(n + 1, 0);
        dp[0] = 1;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) { // 把m换成2,就可以AC爬楼梯这道题
                if (i - j >= 0) dp[i] += dp[i - j];
            }
        }
        return dp[n];
    }
};

代码中m表示最多可以爬m个台阶。

以上代码不能运行哈,我主要是为了体现只要把m换成2,粘过去,就可以AC爬楼梯这道题,不信你就粘一下试试。

此时我就发现一个绝佳的大厂面试题,第一道题就是单纯的爬楼梯,然后看候选人的代码实现,如果把dp[0]的定义成1了,就可以发难了,为什么dp[0]一定要初始化为1,此时可能候选人就要强行给dp[0]应该是1找各种理由。那这就是一个考察点了,对dp[i]的定义理解的不深入。

然后可以继续发难,如果一步一个台阶,两个台阶,三个台阶,直到 m个台阶,有多少种方法爬到n阶楼顶。这道题目leetcode上并没有原题,绝对是考察候选人算法能力的绝佳好题。

这一连套问下来,候选人算法能力如何,面试官心里就有数了。

其实大厂面试最喜欢的问题就是这种简单题,然后慢慢变化,在小细节上考察候选人。

746. 使用最小花费爬楼梯

题目链接: 746. 使用最小花费爬楼梯
参考:https://programmercarl.com/0746.%E4%BD%BF%E7%94%A8%E6%9C%80%E5%B0%8F%E8%8A%B1%E8%B4%B9%E7%88%AC%E6%A5%BC%E6%A2%AF.html

题目描述

数组的每个下标作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i](下标从 0 开始)。

每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。

请你找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。

示例 1:

  • 输入:cost = [10, 15, 20]
  • 输出:15
  • 解释:最低花费是从 cost[1] 开始,然后走两步即可到阶梯顶,一共花费 15 。

示例 2:

  • 输入:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
  • 输出:6
  • 解释:最低花费方式是从 cost[0] 开始,逐个经过那些 1 ,跳过 cost[3] ,一共花费 6 。

提示:

  • cost 的长度范围是 [2, 1000]。
  • cost[i] 将会是一个整型数据,范围为 [0, 999] 。

思路

本题之前的题目描述是很模糊的,看不出来,第一步需要花费体力值,最后一步不用花费,还是说 第一步不花费体力值,最后一步花费。

后来力扣改了题目描述,新题目描述:

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

修改之后的题意就比较明确了,题目中说 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯” 也就是相当于 跳到 下标 0 或者 下标 1 是不花费体力的, 从 下标 0 下标1 开始跳就要花费体力了。

  1. 确定dp数组以及下标的含义

使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。

dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。

对于dp数组的定义,大家一定要清晰!

  1. 确定递推公式

可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]。

dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。

dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。

那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?

一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

  1. dp数组如何初始化

看一下递归公式,dp[i]由dp[i - 1],dp[i - 2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。

那么 dp[0] 应该是多少呢? 根据dp数组的定义,到达第0台阶所花费的最小体力为dp[0],那么有同学可能想,那dp[0] 应该是 cost[0],例如 cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 的话,dp[0] 就是 cost[0] 应该是1。

这里就要说明本题力扣为什么改题意,而且修改题意之后 就清晰很多的原因了。

新题目描述中明确说了 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说 从 到达 第 0 个台阶是不花费的,但从 第0 个台阶 往上跳的话,需要花费 cost[0]。

所以初始化 dp[0] = 0,dp[1] = 0;

  1. 确定遍历顺序
    最后一步,递归公式有了,初始化有了,如何遍历呢?

本题的遍历顺序其实比较简单,简单到很多同学都忽略了思考这一步直接就把代码写出来了。

因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。

  1. 举例推导dp数组

拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如下:

如果大家代码写出来有问题,就把dp数组打印出来,看看和如上推导的是不是一样的。

以上分析完毕,整体C++代码如下:

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> dp(cost.size() + 1);
        dp[0] = 0; // 默认第一步都是不花费体力的
        dp[1] = 0;
        for (int i = 2; i <= cost.size(); i++) {
            dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }
        return dp[cost.size()];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

还可以优化空间复杂度,因为dp[i]就是由前两位推出来的,那么也不用dp数组了,C++代码如下:

// 版本二
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int dp0 = 0;
        int dp1 = 0;
        for (int i = 2; i <= cost.size(); i++) {
            int dpi = min(dp1 + cost[i - 1], dp0 + cost[i - 2]);
            dp0 = dp1; // 记录一下前两位
            dp1 = dpi;
        }
        return dp1;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

当然如果在面试中,能写出版本一就行,除非面试官额外要求 空间复杂度,那么再去思考版本二,因为版本二还是有点绕。版本一才是正常思路。

拓展

旧力扣描述,如果按照 第一步是花费的,最后一步不花费,那么代码是这么写的,提交也可以通过

// 版本一
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> dp(cost.size());
        dp[0] = cost[0]; // 第一步有花费
        dp[1] = cost[1];
        for (int i = 2; i < cost.size(); i++) {
            dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];
        }
        // 注意最后一步可以理解为不用花费,所以取倒数第一步,第二步的最少值
        return min(dp[cost.size() - 1], dp[cost.size() - 2]);
    }
};

当然如果对 动态规划 理解不够深入的话,拓展内容就别看了,容易越看越懵。文章来源地址https://www.toymoban.com/news/detail-442005.html

到了这里,关于算法训练第三十八天|动态规划理论基础、509. 斐波那契数 、70. 爬楼梯 、 746. 使用最小花费爬楼梯的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 《算法导论》学习(十八)----动态规划之矩阵链乘(C语言)

    本文主要讲解了动态规划中的矩阵链乘问题:给定一个矩阵链,得到它的最小代价计算次序。给出了动态规划方案的分析,并且给出了C语言实现。 给定一个n个矩阵的序列(矩阵链) A 1 , A 2 , A 3 , A 4 , . . . , A n A_1,A_2,A_3,A_4,...,A_n A 1 ​ , A 2 ​ , A 3 ​ , A 4 ​ , ... , A n ​ ,现在

    2024年02月06日
    浏览(46)
  • 算法第十八天-实现Trie(前缀树)

    本文是前缀入门教程 从二叉树说起 前缀树,也是一种树。为了理解前缀树,我们先从二叉树说起。常见的二叉树结构是下面这样子的: 可以看到一个树的节点包含了三个元素:该节点本身的值,左子树的指针,右子树的指针。二叉树可视化是下面这样子的: 二叉树的每个节

    2024年01月18日
    浏览(33)
  • 算法第十八天-打家劫舍Ⅱ

    [打家劫舍Ⅱ]是说两个相邻的房间不能同时偷,并且首尾两个房间是相邻的(不能同时偷首尾房间) 明显是基于[打家劫舍Ⅰ]做的升级。[打家劫舍Ⅰ]也是说两个相邻的房间不能同时偷,但是首尾房间不是相邻的(可以同时偷首尾房间) 所以,我们先从[打家劫舍Ⅰ]开始说起。

    2024年01月17日
    浏览(42)
  • 《Java-SE-第三十八章》之注解

    前言 在你立足处深挖下去,就会有泉水涌出!别管蒙昧者们叫嚷:“下边永远是地狱!” 博客主页:KC老衲爱尼姑的博客主页 博主的github,平常所写代码皆在于此 共勉:talk is cheap, show me the code 作者是爪哇岛的新手,水平很有限,如果发现错误,一定要及时告知作者哦!感谢感谢

    2024年02月12日
    浏览(44)
  • 【从零开始学习JAVA | 第三十八篇】应用多线程

    目录 前言: 多线程的实现方式: Thread常见的成员方法: 总结:            多线程的引入不仅仅是提高计算机处理能力的技术手段,更是适应当前时代对效率和性能要求的必然选择。在本文中,我们将深入探讨多线程的应用和实践,帮助读者更好地理解和应用多线程技术,

    2024年02月13日
    浏览(67)
  • 【LeetCode75】第三十八题 二叉树的最近公共祖先

    目录 题目: 示例: 分析: 代码:  给我们一棵二叉树,然后给我们pq两个节点,让我们找出二叉树中它们俩的最近的公共祖先。 那么什么样的节点是它们俩的最近的公共祖先呢,是有两种情况,第一种情况的pq两个节点都在同一条路径上,像下图这样:  那这时pq的最近公

    2024年02月11日
    浏览(36)
  • 算法刷题Day 38 动态规划理论基础+斐波那契数+爬楼梯

    动态规划的解题步骤: 确定 dp 数组(dp table)以及下标的含义 确定递推公式 dp 数组如何初始化 确定遍历顺序 举例推导 dp 数组 很基础

    2024年02月15日
    浏览(62)
  • day52 算法训练|动态规划part13

    参考:代码随想录 1. dp[i]的定义 本题中,正确定义dp数组的含义十分重要。 dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度 为什么一定表示 “以nums[i]结尾的最长递增子序” ,因为我们在 做 递增比较的时候, 如果比较 nums[j] 和 nums[i] 的大小,那么两个递增子序列

    2024年01月15日
    浏览(40)
  • 算法训练day49|动态规划part10

    贪心 因为股票就买卖一次,那么贪心的想法很自然就是取最左最小值,取最右最大值,那么得到的差值就是最大利润。 本次重点学习动态规划方法 1. dp数组(dp table)以及下标的含义 dp[i][0] 表示第i天持有股票所得最多现金,一开始现金为负数,所以第一天就持有股票的话,

    2024年02月03日
    浏览(45)
  • day48算法训练|动态规划part09

    1. dp数组(dp table)以及下标的含义 dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i] 。 2.递推公式 决定dp[i]的因素就是第i房间偷还是不偷。 如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多

    2024年01月16日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包