奥维尔号量子计算机
简介
采用扩展的量子二进制算法。在经典计算机上实现量子计算机。我们的景愿是在个人计算机上实现量子霸权。
此计算机的字长是64位,等效数据位为32位字长的量子计算机。我们采用量子扩展二进制,共有4个字符:0,1,Q,P可以进行经典和量子算法。我们将在汇编层实现字符界面的量子计算机。
可能性
除了量子计算,还存在其他的超级并行计算的可能性。比如说人脑,说人脑拥有量子计算能力是可笑的。但是人脑也有类似于量子计算机的超级并行能力。这说明,迈向超级并行的道路并非一条。我们的想法是在经典计算机通过模拟量子算法得到超级并行能力,也可能比真正的量子计算机差一个层级,但是优越于经典计算机。考虑到经典计算机的低成本,即便如此也是值得追求的。
奥维尔号
文档,更新中
已完成的功能
开发版中的Core和Shell已可以使用。
目前支持如下的命令
设置提示符
setPrompt Star Trek:>
重置提示符
resetPrompt
编码word
codeWord 0xffffffff
生成随机字
monkeyTest.monkeyWord
生成随即窄字
monkeyTest.monkeyNarrowWord
编码字符串
code 0x11
code 0x1111111111
退出
quit
启动Core即可启动奥维尔号。
操作流程【想定】
奥维尔号支持2种数据
字Word 64位扩展二进制,其实字宽为32位,每位扩展二进制占两位
窄字NarrowWord 32位二进制
奥维尔号载入数据采用窄字。
运算时将窄字codeWord成字
字可以进行量子运算
运算结果经过投影成为字的数组
运算结果字的数组会逐一进行验证,通过验证的即为结果
运算结果的字不可以包含Q和P
随后这些结果会decode成为窄字数组,即为最终的结果
加量子与消量子
在奥维尔号的运算中Q在投影操作中会被分支为0和1
所以结果中Q越多,结果膨胀的厉害。
这里引入加量子与消量子概念
加量子:运算结果中使Q增多的运算,可能是和Q运算或者是量子进位。
消量子:运算中使Q减少的运算,主要有如下两种
and 0
Q and 0 = 0
or 1
Q or 1 = 1
近期计划
实现Shell
实现Core
实现最基础的功能
使计算机可以测试
界面想定
Orville:> cod var a = ‘myTest’
Orville:> a = XXXX
Oraville:> binShow a
Orville:> a = ‘0b11011101’
基本字符及其含义
0 经典0
1 经典1
Q 量子纠缠态
P 投影动作,会把纠缠态度分解成经典0或者1,对经典状态没有影响。
在编码时,这4个字会被编码为00,01,10和11
相关运算
Code 将经典字符串编码成量子扩展字符串
Decode 将量子扩展字符串中符合经典要求的字串解码为经典字符串
Project 投影运算,即加上32位宽的P
经典运算,经典字符串使用的经典运算
Qadd 量子扩展加法,为两个64位扩展字符串的运算,结果是一个64位扩展量子字符串,经投影运算,可以得到结果。
Qshow 显示一个量子扩展字面量,使用0,1,Q,P
Qbinshow 显示量子扩展字符串的二进制编码64位宽
Qhexshow 使用16进制显示量子扩展字符串,为16位字符串
量子扩展加法规则
不考虑量子进位字符串
0+0 = 0
0+1 = 1
0+Q = Q
0+P = 0
1+0 = 1
1+1 = 10
1+Q = Q
1+P = 1
Q+0 = Q
Q+1 = Q
Q+Q = Q
Q+P = (0)(1)
P+0 = 0
P+1 = 1
P+Q = (0)(1)
P+P = P
考虑量子进位
0+0 = 0
0+1 = 1
0+Q = Q
0+P = 0
1+0 = 1
1+1 = 10
1+Q = QQ
1+P = 1
Q+0 = Q
Q+1 = QQ
Q+Q = QQ
Q+P = (0)(1)
P+0 = 0
P+1 = 1
P+Q = (0)(1)
P+P = P
量子扩展位运算规则
and
0 and 0 = 0
0 and 1 = 0
窄字
0 and Q = 0
0 and P = 0
1 and 0 = 0
1 and 1 = 1
1 and Q = Q
1 and P = 1
Q and 0 = 0
Q and 1 = Q
Q and Q = Q
Q and P = (0)(1)
P and 0 = 0
P and 1 = 1
P and Q = (0)(1)
P and P = P
or
0 or 0 = 0
0 or 1 = 1
0 or Q = Q
0 or P = 0
1 or 0 = 1
1 or 1 = 1
1 or Q = 1
1 or P = 1
Q or 0 = Q
Q or 1 = 1
Q or Q = Q
Q or P = (0)(1)
P or 0 = 0
P or 1 = 1
P or Q = (0)(1)
P or P = P
not
not 0 = 1
not 1 = 0
not Q = Q文章来源:https://www.toymoban.com/news/detail-442509.html
not P = P文章来源地址https://www.toymoban.com/news/detail-442509.html
到了这里,关于我们的愿景是在个人计算机上实现量子霸权的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!