AHP中特征向量、权重值、CI值等指标如何计算?

这篇具有很好参考价值的文章主要介绍了AHP中特征向量、权重值、CI值等指标如何计算?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、应用

AHP层次分析法是一种解决多目标复杂问题的定性和定量相结合进行计算决策权重的研究方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。

二、操作

SPSSAU操作

(1)点击SPSSAU综合评价里面的‘AHP层次分析’按钮。如下图

AHP中特征向量、权重值、CI值等指标如何计算?

(2)填写表格后点击开始分析

AHP中特征向量、权重值、CI值等指标如何计算?

三、SPSSAU分析步骤

AHP中特征向量、权重值、CI值等指标如何计算?

四、案例

1.背景

当前公司希望组织员工出去旅游,希望综合满足大家的要求,因此找到10位旅游专家,对旅游的4个影响因素(分别是景色,门票,交通和拥挤度)进行评价(即专家评价),最终得出四个影响因素的权重,然后结合权重值,对3个备选景点计算得分,选择出最佳旅游方案。

总共有4个评价因素(即准则层为4项,分别是景色,门票,交通和拥挤度),共有10位旅游专家进行打分,采用1-5分标度法,即比如A因素相对B因素非常重要,此时打5分,那么B因素相对于A因素就是1/5即0.2分。A因素相对B因素比较重要,此时打3分;A因素相对B因素重要程度一样,此时为1分。

共有10个旅游专家打分,最终将10个旅游的打分进行计算平均分,得到最终的判断矩阵表格,如下表:

AHP中特征向量、权重值、CI值等指标如何计算?

2.说明

判断矩阵元素公式为:

aij = 1,元素 i 与元素 j 对上一层次因素的重要性相同;

aij = 3,元素 i 比元素 j比较重要;

aij = 5,元素 i 比元素 j 非常重要;

(2)反之则为

AHP中特征向量、权重值、CI值等指标如何计算?

;

例:  =3,则  =1/3;  =0.5,则  =0.5/1=2;以此类推。

五、分析

将数据放入分析框中,SPSSAU系统自动生成分析结果,如下:

AHP中特征向量、权重值、CI值等指标如何计算?

计算公式

1.特征向量

(1)首先对矩阵各列求和,然后归一化处理(  )结果如下图所示:

AHP中特征向量、权重值、CI值等指标如何计算?

归一化处理公式如下

AHP中特征向量、权重值、CI值等指标如何计算?

式中,  为各列的和。

(2)对新矩阵每一行进行求和,得出特征向量

AHP中特征向量、权重值、CI值等指标如何计算?

2.权重值

计算权重值(W)对特征向量进行归一化处理,如下图:

AHP中特征向量、权重值、CI值等指标如何计算?

例:0.483766/4=0.120942;1.667208/4=0.416802;以此类推。

3.矩阵的最大特征根

AHP中特征向量、权重值、CI值等指标如何计算?

式中,aW表示矩阵 a W 相乘,n为阶数。

4.一致性检验

AHP中特征向量、权重值、CI值等指标如何计算?

   分析结果来源于SPSSAU

本次研究构建出4阶判断矩阵,对应着上表可以查询得到随机一致性RI值为0.890,RI值用于下述一致性检验计算使用。

AHP中特征向量、权重值、CI值等指标如何计算?

AHP层次分析法用于计算权重,并且需要进行一致性检验;简单来说就是在构建判断矩阵时,有可能会出现逻辑性错误,比如A比B重要,B比C重要,但却又出现C比A重要。因此需要使用一致性检验是否出现问题。

(1)CI值

AHP中特征向量、权重值、CI值等指标如何计算?

式中n表示矩阵的阶数。例:  =0.02366;

(2)RI值可对应上表格进行查询得到。

(3)CR值

AHP中特征向量、权重值、CI值等指标如何计算?

例:0.024/0.890=0.027

六、总结

通常情况下CR值越小,则说明判断矩阵一致性越好,一般情况下CR值小于0.1,则判断矩阵满足一致性检验;如果CR值大于0.1,则说明不具有一致性,应该对判断矩阵进行适当调整之后再次进行分析。本次针对4阶判断矩阵计算得到CI值为0.024,针对RI值查表为0.890,因此计算得到CR值为0.027<0.1,意味着本次研究判断矩阵满足一致性检验,计算所得权重具有一致性。文章来源地址https://www.toymoban.com/news/detail-442756.html

到了这里,关于AHP中特征向量、权重值、CI值等指标如何计算?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【多元统计分析及R语言建模】【详解】因子分析法综合应用(教材P271页表9-4): 1. 计算样本相关系数矩阵R、特征根、特征向量。2. 确定因子的个数,并解释这些因子的含义。计算各因子得分并解释

    因子分析法综合应用(教材P271页表9-4): 计算样本相关系数矩阵R、特征根、特征向量。 引入nFactors包,使用eigen()函数求特征值与特征向量。 library(nFactors) ev - eigen(cor(mydata)) # 获取特征值 print(ev) 确定因子的个数,并解释这些因子的含义。计算各因子得分,画出前两个因子的

    2024年02月05日
    浏览(53)
  • 线性代数(应用篇):第五章:特征值与特征向量、第六章:二次型

    1.定义 设 A A A 是 n n n 阶方阵, λ λ λ 是一个数,若存在 n n n 维非零列向量 ξ ξ ξ ,使得 A ξ = λ ξ ( ξ ≠ 0 ) Aξ=λξ quad (ξ≠0) A ξ = λ ξ ( ξ  = 0 ) 则称 λ λ λ 是 A A A 的特征值, ξ ξ ξ 是 A A A 的对应于(属于)特征值 λ λ λ 的特征向量。 注: ①只有方阵才有特征值和特征

    2024年02月14日
    浏览(49)
  • 特征向量与计算机视觉: 解决图像理解的挑战

    计算机视觉是人工智能领域的一个重要分支,它涉及到计算机对于图像和视频的理解与处理。图像理解是计算机视觉的核心技术之一,它旨在让计算机能够理解图像中的对象、场景和动作,并进行相关的分析和判断。然而,图像理解的挑战在于图像中的信息量非常大,并且与

    2024年04月14日
    浏览(61)
  • 风控系统指标计算/特征提取分析与实现01,Redis、Zset、模版方法

    个人博客:无奈何杨(wnhyang) 个人语雀:wnhyang 共享语雀:在线知识共享 Github:wnhyang - Overview 引用 AI 对于风控系统的介绍 风控系统是一种用于在线业务的安全管理系统,它帮助企业和平台防范潜在的欺诈、信用风险以及不合规行为。简单来说,它的核心作用就是“保安全

    2024年03月14日
    浏览(47)
  • OpenCV+OpenCvSharp实现图片特征向量提取与相似度计算

    图片特征向量是一种用于描述图片内容的数学表示,它可以反映图片的颜色、纹理、形状等信息。图片特征向量可以用于做很多事情,比如图片检索、分类、识别等。 本文将介绍图片特征向量的提取以及相似度的计算,并使用C#来实现它们。 文章开始前,我们先来简单了解一

    2024年02月08日
    浏览(41)
  • 【数值分析】用幂法计算矩阵的主特征值和对应的特征向量(附matlab代码)

    用幂法计算下列矩阵的按模最大特征值及对应的特征向量 k= 1 V^T= 8 6 0 m= 8 u^T= 1.0000 0.7500 0 k= 2 V^T= 9.2500 6.0000 -2.7500 m= 9.2500 u^T= 1.0000 0.6486 -0.2973 k= 3 V^T= 9.5405 5.8919 -3.5405 m= 9.5405 u^T= 1.0000 0.6176 -0.3711 k= 4 V^T= 9.5949 5.8414 -3.7309 m= 9.5949 u^T= 1.0000 0.6088 -0.3888 k= 5 V^T= 9.6041 5.8240 -3.7753 m=

    2024年02月01日
    浏览(44)
  • 多模态特征融合:图像、语音、文本如何转为特征向量并进行分类

    学习多模态的话题可以从深度学习的分类任务出发,因为分类任务是最直观的可以观察到不同模态的数据,通过输入数据到模型中,我们可以看到模型是如何学习到数据的特征向量的,同时分类任务的模型也是实现更复杂任务模型的基础。从分类任务中可以了解到图像、文本

    2024年02月02日
    浏览(36)
  • 【OpenCV4】计算对称矩阵特征值和特征向量 cv::eigen() 用法详解和代码示例(c++)

    解析: src:输入矩阵,只能是 CV_32FC1 或 CV_64FC1 类型的方阵(即矩阵转置后还是自己) eigenvalues:输出的特征值组成的向量,数据类型同输入矩阵,排列从大到小 eigenvectors:输出的特征向量组成的矩阵,数据类型同输入矩阵,每一行是一个特征向量,对应相应位置的特征值

    2024年02月13日
    浏览(49)
  • SPSS:主成分分析确定不同指标权重

    主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息,也是数学上处理降维的一种统计学方法。 SPSS实现主成分分析的步骤如下: 1.数据标准化 之所以要对数据

    2024年02月08日
    浏览(51)
  • 模糊综合评价指标如何计算?四种模糊算子如何计算?

      模糊综合评价借助模糊数学的一些概念,对实际的综合评价问题提供评价,即模糊综合评价以模糊数学为基础,应用模糊关系合成原理,将一些边界不清、不易定量的因素定量化,进而进行综合性评价的一种方法。 SPSSAU操作 (1)点击SPSSAU综合评价里面的‘模糊综合评价’

    2024年02月04日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包