点击下方卡片,关注“CVer”公众号
AI/CV重磅干货,第一时间送达
点击进入—>【ReID】微信技术交流群
研究概述:
ReID任务的目的是从海量图像中检索出与给定query相同ID的实例。
Pairwise损失函数在ReID 任务中发挥着关键作用。现有方法都是基于密集采样机制,即将每个实例都作为锚点(anchor)采样其正样本和负样本构成三元组。这种机制不可避免地会引入一些几乎没有视觉相似性的正对,从而影响训练效果。为了解决这个问题,我们提出了一种新颖的损失范式,称为稀疏Pairwise (SP) 损失,在ReID任务中针对mini-batch的每一类筛选出少数合适的样本对来构造损失函数(如图1所示)。基于所提出的损失框架,我们进一步提出了一种自适应正挖掘策略,可以动态地适应不同类别内部的变化。大量实验表明,SP 损失及其自适应变体AdaSP 损失在多个ReID数据集上均优于其他成对损失方法,并取得了state-of-the-art性能。
图1. Sparse pairwise损失与Dense pairwise损失之间的差异
Adaptive Sparse Pairwise Loss for Object Re-Identification
论文地址:https://arxiv.org/abs/2303.18247
Github地址(已开源):
https://github.com/Astaxanthin/AdaSP
研究动机:
ReID任务中的由于光照变化、视角改变和遮挡等原因会造成同一类中不同实例的视觉相似度很低(如图2所示),因此由视觉相似度很低的实例(我们称之为harmful positive pair)构成的正样本对会对特征表示的学习过程带来不利的影响,从而使训练收敛至局部极小点。现有的方法都是以每个样本作为锚(anchor)密集采样正样本对来构造度量损失函数,不可避免的会引入大量坏对影响训练结果。基于此,我们提出了稀疏Pairwise损失函数以降低对坏对的采样概率,从而减轻坏对在训练过程的不利影响。
图2. 行人ReID数据集上不同级别的类内差异
方法介绍:我们提出的稀疏Pairwise损失函数(命名为SP loss)针对每一类仅采样一个正样本对和一个负样本对。其中负样本对为该类别与其他所有类别间最难的负样本对,而正样本对为所有样本的hard positive pair集合中的最不难positive pair(least-hard mining):
从几何角度看,以最难positive pair的距离作为半径的超球面是能够覆盖所有类内样本的最大球,而以hard positive pair集合中最不难positive pair的距离作为半径的超球面是能够副高所有类内样本的最小球,如图3所示。利用最小球能够有效的避免过于难的harmful positive pair对于训练过程的影响,我们从理论上证明了针对一个mini-batch,我们的方法采样得到的正样本对中harmful positive pair的期望占比小于Triplet-BH和Circle等密集采样方法。
图3. 不同级别类内差异差异下的最大和最小覆盖球。
为了适应不同类别可能具有不同的类内差异,我们在SP loss的基础上增加了自适应策略构成AdaSP loss:
该loss通过动态调整构造loss所用到的正样本对相似度以适应不同的类内差异。
实验结果:
我们在多个行人ReID数据集(包括MSMT17,Market1501,DukeMTMC,CUHK03)和车辆ReID数据集(包括VeRi-776,VehicleID,VERIWild)上验证了AdaSP loss的有效性。实验结果显示AdaSP loss在单独使用时超过Triplet-BH,Circle,MS,Supcon,EP等已有度量损失函数,如表1所示;AdaSP loss在不同骨干网络(包括ResNet-50/101/152,ResNet-IBN,MGN,ViT,DeiT)上的ReID性能均优于Triplet-BH;此外,AdaSP loss结合分类损失函数在ReID任务上达到了State-of-the-art的性能。
表1. 在不同数据集上不同度量损失函数的性能比较
具体细节可以参考原文。
点击进入—>【ReID和Transformer】微信技术交流群
最新CVPP 2023论文和代码下载
后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集文章来源:https://www.toymoban.com/news/detail-443082.html
后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF文章来源地址https://www.toymoban.com/news/detail-443082.html
ReID和Transformer交流群成立
扫描下方二维码,或者添加微信:CVer333,即可添加CVer小助手微信,便可申请加入CVer-ReID或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。
一定要备注:研究方向+地点+学校/公司+昵称(如ReID或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群
▲扫码或加微信号: CVer333,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉,已汇集数千人!
▲扫码进星球
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看
到了这里,关于CVPR 2023 | 清华&美团提出稀疏Pairwise损失函数!ReID任务超已有损失函数!的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!