【目标检测】YOLOv5:添加漏检率和虚检率输出

这篇具有很好参考价值的文章主要介绍了【目标检测】YOLOv5:添加漏检率和虚检率输出。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

在目标检测领域,衡量一个模型的优劣的指标往往是mAP,然而实际工程中,有时候更倾向于看漏检率和虚检率。YOLOv5的原始代码并没有这两个指标的输出,因此我想利用原始代码的混淆矩阵,输出这两个指标数值。

指标解释

漏检即原本有目标存在却没有检测出来,换句话说就是原本是目标却检测成了背景。
虚检(虚警)即原本没有目标却误认为有目标,换句话说就是原本是背景却检测成了目标。

首先来看YOLOv5原本输出的混淆矩阵,图中灰色覆盖的地方是原本输出的各类别,也就是输出的正例,最后一行和一列是背景类。
列是模型预测的结果,行是标签的真实结果。可以看到最后一行出现数值,表示出现了漏检;最后一列出现数值,则表示出现了虚检。

【目标检测】YOLOv5:添加漏检率和虚检率输出

代码改进

现在来看YOLOv5输出的混淆矩阵代码部分,代码主要位于metrics.pyConfusionMatrix类中。

class ConfusionMatrix:
    # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
    def __init__(self, nc, conf=0.25, iou_thres=0.45):
        """
        params nc: 数据集类别个数
        params conf: 预测框置信度阈值
        Params iou_thres: iou阈值
        """
        self.matrix = np.zeros((nc + 1, nc + 1))  # +1的目的是添加背景类
        self.nc = nc  # number of classes
        self.conf = conf
        self.iou_thres = iou_thres
        self.lou = 0
        self.total = 0
        self.xu = 0

    def process_batch(self, detections, labels):
        """
        Return intersection-over-union (Jaccard index) of boxes.
        Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
        Arguments:
            detections (Array[N, 6]), x1, y1, x2, y2, conf, class
            labels (Array[M, 5]), class, x1, y1, x2, y2
        Returns:
            None, updates confusion matrix accordingly
        """
        detections = detections[detections[:, 4] > self.conf]  # 筛除置信度过低的预测框(和nms差不多)
        gt_classes = labels[:, 0].int()
        detection_classes = detections[:, 5].int()
        iou = general.box_iou(labels[:, 1:], detections[:, :4])

        x = torch.where(iou > self.iou_thres)
        if x[0].shape[0]:
            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
            if x[0].shape[0] > 1:
                matches = matches[matches[:, 2].argsort()[::-1]]
                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
                matches = matches[matches[:, 2].argsort()[::-1]]
                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
        else:
            matches = np.zeros((0, 3))

        n = matches.shape[0] > 0
        m0, m1, _ = matches.transpose().astype(np.int16)
        for i, gc in enumerate(gt_classes):
            j = m0 == i
            if n and sum(j) == 1:
                #  如果sum(j)=1 说明gt[i]这个真实框被某个预测框检测到了
                self.matrix[gc, detection_classes[m1[j]]] += 1  # correct
            else:
                #  如果sum(j)=0 说明gt[i]这个真实框没用被任何预测框检测到 也就是说这个真实框被检测成了背景框
                self.matrix[self.nc, gc] += 1  # background FP

        if n:
            for i, dc in enumerate(detection_classes):
                if not any(m1 == i):
                    self.matrix[dc, self.nc] += 1  # background FN

        self.lou = sum(self.matrix[-1, :])
        self.total = sum(sum(self.matrix))
        self.xu = sum(self.matrix[:, -1])

    def matrix(self):
        return self.matrix

    def plot(self, save_dir='', names=()):
        try:
            import seaborn as sn
            # 按照每一列进行归一化
            array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6)  # normalize
            array[array < 0.005] = np.nan  # don't annotate (would appear as 0.00)

            fig = plt.figure(figsize=(12, 9), tight_layout=True)
            sn.set(font_scale=1.0 if self.nc < 50 else 0.8)  # for label size
            labels = (0 < len(names) < 99) and len(names) == self.nc  # apply names to ticklabels
            sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
                       xticklabels=names + ['background FP'] if labels else "auto",
                       yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
            fig.axes[0].set_xlabel('True')
            fig.axes[0].set_ylabel('Predicted')
            fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
        except Exception as e:
            pass

    def print(self):
        for i in range(self.nc + 1):
            print(' '.join(map(str, self.matrix[i])))

阅读代码可以发现,混淆矩阵再绘制时对每一列单独进行了归一化,那么再绘制之前,混淆矩阵存储了每一个预测结果和真实结果的数目。

于是我添加了三个属性self.louself.total = 0self.xu = 0,分别统计漏检目标数目,总目标数目和虚检目标数目。

漏检目标数目只需要将混淆矩阵最后一行相加,虚检目标数目只需要将混淆矩阵最后一列相加,总目标数目则将混淆矩阵所有数量相加。

然后在test.py中进行添加:

    # Print speeds
    t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size)  # tuple
    if not training:
        print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)

    # 计算漏检率
    print("漏检样本数为:")
    print(int(confusion_matrix.lou))
    print("漏检率为:")
    print(confusion_matrix.lou / confusion_matrix.total)
    # 计算虚检率
    print("虚检样本数为:")
    print(int(confusion_matrix.xu))
    print("虚检率为:")
    print(confusion_matrix.xu / confusion_matrix.total)

    # Plots
    if plots:
        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
        if wandb_logger and wandb_logger.wandb:
            val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
            wandb_logger.log({"Validation": val_batches})
    if wandb_images:
        wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})

输出效果:

【目标检测】YOLOv5:添加漏检率和虚检率输出


2022.8.8更

Bug修复

突然想到前面的代码有个Bug,计算漏检率不应该采用混淆矩阵的全部内容,而只需采用混淆矩阵中的正例样本数目,否则分母将虚检的目标也混合进去,导致结果偏小。

直观理解,输出混淆矩阵可视化:分母应该是红框内的所有内容
【目标检测】YOLOv5:添加漏检率和虚检率输出

metrics.py修改:

class ConfusionMatrix:
    # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
    def __init__(self, nc, conf=0.25, iou_thres=0.45):
        """
        params nc: 数据集类别个数
        params conf: 预测框置信度阈值
        Params iou_thres: iou阈值
        """
        self.matrix = np.zeros((nc + 1, nc + 1))  # +1的目的是添加背景类
        self.nc = nc  # number of classes
        self.conf = conf
        self.iou_thres = iou_thres
        self.lou = 0
        self.total = 0
        self.xu = 0
        self.class_total = 0

    def process_batch(self, detections, labels):
        """
        Return intersection-over-union (Jaccard index) of boxes.
        Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
        Arguments:
            detections (Array[N, 6]), x1, y1, x2, y2, conf, class
            labels (Array[M, 5]), class, x1, y1, x2, y2
        Returns:
            None, updates confusion matrix accordingly
        """
        detections = detections[detections[:, 4] > self.conf]  # 筛除置信度过低的预测框(和nms差不多)
        gt_classes = labels[:, 0].int()
        detection_classes = detections[:, 5].int()
        iou = general.box_iou(labels[:, 1:], detections[:, :4])

        x = torch.where(iou > self.iou_thres)
        if x[0].shape[0]:
            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
            if x[0].shape[0] > 1:
                matches = matches[matches[:, 2].argsort()[::-1]]
                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
                matches = matches[matches[:, 2].argsort()[::-1]]
                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
        else:
            matches = np.zeros((0, 3))

        n = matches.shape[0] > 0
        m0, m1, _ = matches.transpose().astype(np.int16)
        for i, gc in enumerate(gt_classes):
            j = m0 == i
            if n and sum(j) == 1:
                #  如果sum(j)=1 说明gt[i]这个真实框被某个预测框检测到了
                self.matrix[gc, detection_classes[m1[j]]] += 1  # correct
            else:
                #  如果sum(j)=0 说明gt[i]这个真实框没用被任何预测框检测到 也就是说这个真实框被检测成了背景框
                self.matrix[self.nc, gc] += 1  # background FP

        if n:
            for i, dc in enumerate(detection_classes):
                if not any(m1 == i):
                    self.matrix[dc, self.nc] += 1  # background FN

        self.lou = sum(self.matrix[-1, :])
        self.total = sum(sum(self.matrix))
        self.xu = sum(self.matrix[:, -1])
        self.class_total = sum(sum(self.matrix)[: -1])


    def matrix(self):
        return self.matrix

    def plot(self, save_dir='', names=()):
        try:
            import seaborn as sn
            # 按照每一列进行归一化
            array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6)  # normalize
            array[array < 0.005] = np.nan  # don't annotate (would appear as 0.00)

            fig = plt.figure(figsize=(12, 9), tight_layout=True)
            sn.set(font='SimHei', font_scale=1.0 if self.nc < 50 else 0.8)  # for label size
            labels = (0 < len(names) < 99) and len(names) == self.nc  # apply names to ticklabels
            sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
                       xticklabels=names + ['background FP'] if labels else "auto",
                       yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
            fig.axes[0].set_xlabel('True')
            fig.axes[0].set_ylabel('Predicted')
            fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
        except Exception as e:
            pass

    def print(self):
        for i in range(self.nc + 1):
            print(' '.join(map(str, self.matrix[i])))

test.py修改:

# 计算漏检率
print("漏检样本数为:")
print(int(confusion_matrix.lou))
print("漏检率为:")
print(confusion_matrix.lou / confusion_matrix.class_total)
# 计算虚检率
print("虚检样本数为:")
print(int(confusion_matrix.xu))
print("虚检率为:")
print(confusion_matrix.xu / confusion_matrix.total)

2022.8.10更

训练拓展

突然想到一个问题:其实YOLOv5本身输出指标包含了准确率§和召回率®。
在一些博文中提到:漏检率=1-召回率,在YOLOv5中也可以这样理解吗?
回顾一下召回率的计算公式:R = TP / (TP+FN),通俗的说,召回率就是来衡量真实样本中,被检测正确的比例。
这里的TP(true positive)表示预测出的正确的框,即通过模型预测出的框,逐个与该图像的标注框求iou,如果与标注框产生的最大iou大于之前设置好的iou阈值,并且此预测框对应的标签与通过iou操作找到的标注框标签一致。
换句话说,YOLOv5的召回率分子的TP只有斜对角线上的值,检测出来但分类错误依然被视作FN,因此,自己计算的漏检率和召回率并不是严格互补的关系。

进一步思考,有没有办法让模型训练以降低漏检率为目标呢,也就是以召回率最高来保存模型。

先来看看YOLOv5模型的保存逻辑:
train.py中,定义了一个fi指标:

# Update best mAP
fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
if fi > best_fitness:
    best_fitness = fi
wandb_logger.end_epoch(best_result=best_fitness == fi)

这个指标在metrics.py中进行定义得到:

def fitness(x):
    # Model fitness as a weighted combination of metrics
    w = [0.0, 0.0, 0.1, 0.9]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
    return (x[:, :4] * w).sum(1)

也就是说,YOLOv5的模型保存逻辑实际上是0.1的mAP@0.5 x mAP@0.5:0.95,这里定义了四个权重,以R为目标只需修改对应权重即可。文章来源地址https://www.toymoban.com/news/detail-443163.html

到了这里,关于【目标检测】YOLOv5:添加漏检率和虚检率输出的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLOv5实现目标检测

    YOLOv5 🚀 是COCO数据集上预处理的一系列对象检测架构和模型,代表Ultralytics对未来视觉人工智能方法的开源研究,融合了数千小时研究和开发过程中积累的经验教训和最佳实践。 本文用来记录第一次使用 YOLOv5实现: 视频目标检测 摄像头目标检测 博主所使用的环境是win10 +

    2024年02月09日
    浏览(44)
  • YOLOv5目标检测实验

    最近在用YOLOv5跑一些目标检测的东西,这是自己日常学习的一些总结!后期会继续更新!有问题也欢迎批评指正!如果雷同请见谅! 创建数据集是在detect.py里面的create_dataloader,并在主函数里面调用 yolov5在计算资源的调用上采用了torch.nn.parallel.DistributedDataParallel(DDP,多张显卡

    2024年02月07日
    浏览(45)
  • 【目标检测】yolov5模型详解

    yolov5于2020年由glenn-jocher首次提出,直至今日yolov5仍然在不断进行升级迭代。 Yolov5有YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四个版本。文件中,这几个模型的结构基本一样,不同的是depth_multiple模型深度和width_multiple模型宽度这两个参数。 yolov5主要分为以下几部分: Input:输入 Backbone:

    2024年02月07日
    浏览(51)
  • 【目标检测】yolov5代码实战

    YOLO 是 “You only look once” 缩写 , 是将图像划分为网格系统的对象检测算法,网格中的每个单元负责检测自身内的对象。 由于其速度和准确性,YOLO是最著名的目标检测算法之一。yolov5作为YOLO系列第五个迭代版本,它的一个特点就是权重文件非常之小,可以搭载在配置更低的移

    2024年02月07日
    浏览(48)
  • 利用yolov5进行目标检测,并将检测到的目标裁剪出来

    写在前面:关于yolov5的调试运行在这里不做过多赘述,有关yolov5的调试运行请看: https://www.bilibili.com/video/BV1tf4y1t7ru/spm_id_from=333.999.0.0vd_source=043dc71f3eaf6a0ccb6dada9dbd8be37 本文章主要讲解的是裁剪。 需求:识别图片中的人物并将其裁剪出来 如果只需识别人物的话,那么只需在y

    2024年02月02日
    浏览(43)
  • yolov5检测小目标(附源码)

    6.30 更新切割后的小图片的label数据处理 前言 yolov5大家都熟悉,通用性很强,但针对一些小目标检测的效果很差。 YOLOv5算法在训练模型的过程中,默认设置的图片大小为640x640像素(img-size),为了检测小目标时,如果只是简单地将img-size改为4000*4000大小,那么所需要的内存会变

    2024年02月03日
    浏览(46)
  • OpenCV之YOLOv5目标检测

    💂 个人主页: 风间琉璃 🤟 版权:  本文由【风间琉璃】原创、在CSDN首发、需要转载请联系博主 💬 如果文章对你有帮助、 欢迎关注、 点赞、 收藏(一键三连) 和 订阅专栏 哦 目录 前言 一、YOLOv5简介 二、预处理 1.获取分类名 2.获取输出层名称 3.图像尺度变换 三、模型加载

    2024年01月20日
    浏览(55)
  • YOLOv5增加小目标检测层

    采用增加小目标检测层的方式来使YOLOv5能够检测小目标,只需要修改models下的yaml文件中的内容即可。 主要改变如下: 原yaml: 改变后的yaml: 主要改变了两个地方:anchors和head (1)anchors (2)head 这样就改好了。 注释:在yolov5的6.0版本作者将CSP换为C3,YOLOv5 2020年5月出来后不

    2024年02月11日
    浏览(50)
  • 深度学习基础——YOLOv5目标检测

            YOLO系列算法属于基于回归的单阶段目标检测算法,它将定位与分类两个任务整合成一个任务,直接通过CNN网络提取全局信息并预测图片上的目标。给目标检测算法提供了新的解决方案,并且图片检测速度准确率与召回率达到实时检测的要求。其中YOLOv1、YOLO2、YO

    2024年02月22日
    浏览(46)
  • 【目标检测】YOLOv5:模型构建解析

    最近在看一些目标检测的最新论文和代码,大多数都是在YOLOv5的基础上进行魔改。 改的最多的基本是原版本的网络结构,这篇博文就从源码角度来解析YOLOv5中,模型是如何构建出来的。 本文使用的是YOLOv5-5.0版本。 在YOLOv5中,模型结构基本是写在了 .yaml 中,5.0版本的YOLOv5共

    2024年02月06日
    浏览(90)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包