线性代数之矩阵秩的求法与示例详解

这篇具有很好参考价值的文章主要介绍了线性代数之矩阵秩的求法与示例详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

线性代数之矩阵秩的求法

K阶子式的定义

在m×n的矩阵A中,任取k行、k列(k小于等于m、k小于等于n),位于这些行和列交叉处的 个元素,在不改变原有次序的情况下组成的矩阵叫做矩阵A的k阶子式。

不难发现矩阵A有个线性代数之矩阵秩的求法与示例详解 个k阶子式。

 比如有矩阵A 线性代数之矩阵秩的求法与示例详解

比如取第1行,第3行,第1列,第4列交叉上的元素组成的子式即为其一个2阶子式。即按照如下划线操作 :线性代数之矩阵秩的求法与示例详解

即其中的一个2阶子式是: 线性代数之矩阵秩的求法与示例详解

矩阵秩的定义

设在m×n的矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式全等于0,则D是该矩阵的最高阶非零子式。非零子式的最高阶数即叫做矩阵的秩 记作R(A) r是rank的缩写。不难发现矩阵的秩有如下特点:

  •  R(A)大于等于0小于等于min{m,n}。
  • r(A) = m 取了所有的行,叫行满秩
  • r(A) = n 取了所有的列,叫列满秩
  • r(A) < min{m,n}则叫做降秩
  • A是方阵,A满秩的充要条件是A是可逆的(转换为A的行列式不等于0,所以可逆)
  • r(A) = r的充要条件是有一个r阶子式不为0,所有r+1阶子式为0
  • 矩阵A(m乘n阶)左乘m阶可逆矩阵P,右乘n阶可逆矩阵Q,或者左右乘可逆矩阵PAQ不改变其秩。
  • 对矩阵实施(行、列)初等变换不改变矩阵的秩
  • 阶梯形矩阵的秩 r(A)等于非零行的行数。
  • A的秩等于A转置的秩
  • 任意矩阵乘可逆矩阵,秩不变

矩阵秩的求法

定义法

该方法是根据矩阵的秩的定义来求,如果找到k阶子式为0,而k-1阶不为0,那么k-1即该矩阵的秩。

#Sample1(示例一),求下列矩阵的秩:

A=线性代数之矩阵秩的求法与示例详解

针对矩阵A,我们先找它的一个3阶子式看看是否为0,比如我们找的是

线性代数之矩阵秩的求法与示例详解

很显然该三阶子式等于-1≠0,所以该矩阵的秩是3。

因为当前矩阵没有4阶子式子,所以3是该矩阵的最高阶。

#Sample2(示例二):已知矩阵A

线性代数之矩阵秩的求法与示例详解 ,如果R(A)<3,求a。

Step1:这种已知矩阵的秩求参数的题目需要借助秩的定义。因为当前矩阵A是3阶的,而R(A)又小于3,那么A的三阶子式(即A本身)为0。

Step2:可按照行(列)将第2、3行(列)都加到第1行(列)上去,然后提取公因子a+2,

Step3:再以第1行(列)为轴,消除其它行(列)进而得到

Step4:(a+2)线性代数之矩阵秩的求法与示例详解 =0 所以a=-2或者a=1。

类似的,#Sample3(示例三)如果如下的矩阵A的秩R(A)等于3那么k等多少呢?

线性代数之矩阵秩的求法与示例详解

思路:该题的思路跟上例类似,不过这里解出的k(k=1或者k=-3)需要带回原矩阵里核验下,而k=1时R(A)=1和题目的条件冲突,所以k只能为-3。

阶梯型数非零行数

分两步:

第一步先将原矩阵化简成阶梯型矩阵

第二步数新矩阵的非零行行数,该函数即对应原矩阵的秩。

#Sample4(示例四):示例,求如下矩阵A的秩

线性代数之矩阵秩的求法与示例详解

Step1:第1行的-2倍加到第2行上去、第1行的1倍加到第三行上去,于是得到

线性代数之矩阵秩的求法与示例详解

Step2:针对上述矩阵,将第2行加到第3行上去,于是得到

线性代数之矩阵秩的求法与示例详解

Step3:此时我们已经能输出非0行的函数即2,所以矩阵A的秩是2。

阶梯型画台阶

我们可以借助阶梯的图形化方式勾出台阶数,见下图示例#Sample5(示例五):

线性代数之矩阵秩的求法与示例详解  

:1 画阶梯(台阶下的元素全为0)数台阶,台阶水平方向可跨多列,垂直(列)方向不能跨多行(即一次只能有1个台阶)。

2 该方法本质上属于阶梯型,只是操作时以图形化数台阶的方式。文章来源地址https://www.toymoban.com/news/detail-443245.html

到了这里,关于线性代数之矩阵秩的求法与示例详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数的学习和整理18:矩阵的秩的各种定理, 秩和维度(未完成)

    目录 0 问题引出:什么是秩? 概念备注: 1 先厘清:什么是维数? 1.1 真实世界的维度数 1.2 向量空间的维数 1.2.1 向量空间,就是一组最大线性无关的向量组/基张成的空间 1.3 向量α的维数 1.3.1 向量的维数=分量(数字/标量)个数 1.4 向量组/矩阵 A 的维数 1.4.1 什么是向量组的维

    2024年02月10日
    浏览(57)
  • 线性代数的学习和整理18:什么是维度,什么是秩?秩的各种定理&&秩的计算 (计算部分未完成)

    目录 0 问题引出:什么是秩? 概念备注: 1 先厘清:什么是维数? 1.1 真实世界的维度数 1.2 向量空间的维数 1.2.1 向量空间,就是一组最大线性无关的向量组/基张成的空间 1.3 向量α的维数 1.3.1 向量的维数=分量(数字/标量)个数 1.4 向量组/矩阵 A 的维数 1.4.1 什么是向量组的维

    2024年02月10日
    浏览(46)
  • 线性代数第二章矩阵及其运算详解

    一.线性方程组和矩阵 1.概念 如图所示,该矩阵称为 m行n列矩阵 若行数和列数都等于n,则该矩阵称为 n阶方阵 两个矩阵的行数相等,列数也相等,就称它们为 同型矩阵 若A=(aij)和B=(bij)是同型矩阵,且aij=bij(i=1,2,...,m;j=1,2,...,n),则称 矩阵A与矩阵B相等 ,记作 A=B 2.特殊

    2024年01月25日
    浏览(52)
  • 线性代数的学习和整理18:什么是维度,什么是秩?关于秩的各种定理 (未完成)

    目录 0 问题引出:什么是秩? 概念备注: 1 先厘清:什么是维数? 1.1 真实世界的维度数 1.2 向量空间的维数 1.2.1 向量空间,就是一组最大线性无关的向量组/基张成的空间 1.3 向量α的维数 1.3.1 向量的维数=分量(数字/标量)个数 1.4 向量组/矩阵 A 的维数 1.4.1 什么是向量组的维

    2024年02月10日
    浏览(55)
  • 线性代数本质系列(一)向量,线性组合,线性相关,矩阵

    本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第一篇 向量究竟是什么? 向量的线性组合,基与线性相关 矩阵与线性相关 矩阵乘法与线性变换 三维空间中的线性变换 行列式 逆矩阵,列空间,秩与零空间 克莱姆法则 非方阵 点积与对偶性 叉积 以线性变换

    2024年02月04日
    浏览(53)
  • 线性代数:线性方程求解、矩阵的逆、线性组合、线性独立

    本文参考www.deeplearningbook.org一书第二章2.3 Identity and Inverse Matrices 2.4 Linear Dependence and Span 本文围绕 线性方程求解 依次介绍矩阵的逆、线性组合、线性独立等线性代数的基础知识点。 本文主要围绕求解线性方程展开,我们先把线性方程写出来,方程如下: 其中,是已知的;,

    2024年02月08日
    浏览(53)
  • 0203逆矩阵-矩阵及其运算-线性代数

    定义7 对于 n n n 阶矩阵A,如果有一个 n n n 阶矩阵B,使 A B = B A = E AB=BA=E A B = B A = E 则说矩阵A是可逆的,并把矩阵B称为A的逆矩阵,简称逆阵。 定理1 若矩阵A可逆,则 ∣ A ∣ ≠ 0 vert Avert not = 0 ∣ A ∣  = 0 证明: A 可逆,即有 A − 1 ,使得 A A − 1 = E ∣ A A − 1 ∣ = ∣ A

    2024年04月13日
    浏览(59)
  • 线性代数2:矩阵(1)

    目录 矩阵: 矩阵的定义: 0矩阵 方阵  同型矩阵: 矩阵相等的判定条件  矩阵的三则运算: 乘法的适用条件 矩阵与常数的乘法: 矩阵的乘法: 矩阵的乘法法则:  Note1:  Note2:  Note3:  向量与矩阵的关系: 转置矩阵:  矩阵多项式: 矩阵的重要性质:  性质2:  性质

    2024年02月08日
    浏览(83)
  • 线性代数基础【2】矩阵

    一、基本概念 ①矩阵 像如下图示的为矩阵,记为A=(aij)m*n ②同型矩阵及矩阵相等 若A、B为如下两个矩阵 如果A和B的行数和列数相等,那么A和B为同型矩阵,且A和B的元素相等(即:aij=bij),则称A和B相等 ③伴随矩阵 设A为n阶矩阵(如上图所示),设A的行列式|A|,则A中aij的余子式为Mij,代数余

    2024年02月04日
    浏览(52)
  • 线性代数基础--矩阵

     矩阵是由排列在矩形阵列中的数字或其他数学对象组成的表格结构。它由行和列组成,并且在数学和应用领域中广泛使用。 元素:矩阵中的每个数字称为元素。元素可以是实数、复数或其他数学对象。 维度:矩阵的维度表示矩阵的行数和列数。一个 m × n 的矩阵有 m 行和

    2024年02月11日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包