1. 控制流函数
格式 |
解释 |
案例 |
IF(expr,v1,v2) |
如果表达式 expr 成立,返回结果 v1;否则,返回结果 v2。 |
SELECT IF(1 > 0,'正确','错误') ->正确 |
IFNULL(v1,v2) |
如果 v1 的值不为 NULL,则返回 v1,否则返回 v2。 |
SELECT IFNULL(null,'Hello Word') ->Hello Word |
ISNULL(expression) |
判断表达式是否为 NULL |
SELECT ISNULL(NULL); ->1 |
NULLIF(expr1, expr2) |
比较两个字符串,如果字符串 expr1 与 expr2 相等 返回 NULL,否则返回 expr1 |
SELECT NULLIF(25, 25); -> |
格式 |
解释 |
操作 |
CASE expression WHEN condition1 THEN result1 WHEN condition2 THEN result2 ... WHEN conditionN THEN resultN ELSE result END |
CASE 表示函数开始,END 表示函数结束。如果 condition1 成立,则返回 result1, 如果 condition2 成立,则返回 result2,当全部不成立则返回 result,而当有一个成立之后,后面的就不执行了。 |
select case 100 when 50 then 'tom' when 100 then 'mary'else 'tim' end ; select case when 1=2 then 'tom' when 2=2 then 'mary' else'tim' end ; |
use mydb4;
-- 创建订单表
create table orders(
oid int primary key, -- 订单id
price double, -- 订单价格
payType int -- 支付类型(1:微信支付 2:支付宝支付 3:银行卡支付 4:其他)
);
insert into orders values(1,1200,1);
insert into orders values(2,1000,2);
insert into orders values(3,200,3);
insert into orders values(4,3000,1);
insert into orders values(5,1500,2);
-- 方式1
select
* ,
case
when payType=1 then '微信支付'
when payType=2 then '支付宝支付'
when payType=3 then '银行卡支付'
else '其他支付方式'
end as payTypeStr
from orders;
-- 方式2
select
* ,
case payType
when 1 then '微信支付'
when 2 then '支付宝支付'
when 3 then '银行卡支付'
else '其他支付方式'
end as payTypeStr
from orders;
2. 窗口函数
非聚合窗口函数是相对于聚合函数来说的。聚合函数是对一组数据计算后返回单个值(即分组),非聚合函数一次只会处理一行数据。窗口聚合函数在行记录上计算某个字段的结果时,可将窗口范围内的数据输入到聚合函数中,并不改变行数。
-- 语法:
window_function ( expr ) OVER (
PARTITION BY ...
ORDER BY ...
frame_clause
)
其中,window_function 是窗口函数的名称;expr 是参数,有些函数不需要参数;OVER子句包
含三个选项:
分区(PARTITION BY):
PARTITION BY选项用于将数据行拆分成多个分区(组),它的作用类似于GROUP BY分组。如
果省略了 PARTITION BY,所有的数据作为一个组进行计算
排序(ORDER BY):
OVER 子句中的ORDER BY选项用于指定分区内的排序方式,与 ORDER BY 子句的作用类似
以及窗口大小(frame_clause):
frame_clause选项用于在当前分区内指定一个计算窗口,也就是一个与当前行相关的数据子集。
数据准备:
use mydb4;
create table employee(
dname varchar(20), -- 部门名
eid varchar(20),
ename varchar(20),
hiredate date, -- 入职日期
salary double -- 薪资
);
insert into employee values('研发部','1001','刘备','2021-11-01',3000);
insert into employee values('研发部','1002','关羽','2021-11-02',5000);
insert into employee values('研发部','1003','张飞','2021-11-03',7000);
insert into employee values('研发部','1004','赵云','2021-11-04',7000);
insert into employee values('研发部','1005','马超','2021-11-05',4000);
insert into employee values('研发部','1006','黄忠','2021-11-06',4000);
insert into employee values('销售部','1007','曹操','2021-11-01',2000);
insert into employee values('销售部','1008','许褚','2021-11-02',3000);
insert into employee values('销售部','1009','典韦','2021-11-03',5000);
insert into employee values('销售部','1010','张辽','2021-11-04',6000);
insert into employee values('销售部','1011','徐晃','2021-11-05',9000);
insert into employee values('销售部','1012','曹洪','2021-11-06',6000);
2.1 序号函数
序号函数有三个:ROW_NUMBER()、RANK()、DENSE_RANK(),可以用来实现分组排序,并添
加序号。
-- 语法:
row_number()|rank()|dense_rank() over (
partition by ...
order by ...
)
-- 对每个部门的员工按照薪资排序,并给出排名
select
dname,
ename,
salary,
row_number() over(partition by dname order by salary desc) as rn
from employee;
-- 对每个部门的员工按照薪资排序,并给出排名 rank
select
dname,
ename,
salary,
rank() over(partition by dname order by salary desc) as rn
from employee;
-- 对每个部门的员工按照薪资排序,并给出排名 dense-rank
select
dname,
ename,
salary,
dense_rank() over(partition by dname order by salary desc) as rn
from employee;
--求出每个部门薪资排在前三名的员工- 分组求TOPN
select
*
from
(
select
dname,
ename,
salary,
dense_rank() over(partition by dname order by salary desc) as rn
from employee
)t
where t.rn <= 3
-- 对所有员工进行全局排序(不分组)
-- 不加partition by表示全局排序
select
dname,
ename,
salary,
dense_rank() over( order by salary desc) as rn
from employee;
2.2 开窗聚合函数
select
dname,
ename,
salary,
sum(salary) over(partition by dname order by hiredate) as pv1
from employee;
select cookieid,createtime,pv,
sum(pv) over(partition by cookieid) as pv3
from itcast_t1; -- 如果没有order by排序语句 默认把分组内的所有数据进行sum操作
select
dname,
ename,
salary,
sum(salary) over(partition by dname order by hiredate rows between unbounded preceding and current row) as c1
from employee;
select
dname,
ename,
salary,
sum(salary) over(partition by dname order by hiredate rows between 3 preceding and current row) as c1
from employee;
select
dname,
ename,
salary,
sum(salary) over(partition by dname order by hiredate rows between 3 preceding and 1 following) as c1
from employee;
select
dname,
ename,
salary,
sum(salary) over(partition by dname order by hiredate rows between current row and unbounded following) as c1
from employee;
2.3 分布函数
CUME_DIST:
用途:分组内小于、等于当前rank值的行数 / 分组内总行数
应用场景:查询小于等于当前薪资(salary)的比例
select
dname,
ename,
salary,
cume_dist() over(order by salary) as rn1, -- 没有partition语句 所有的数据位于一组
cume_dist() over(partition by dept order by salary) as rn2
from employee;
/*
rn1: 没有partition,所有数据均为1组,总行数为12,
第一行:小于等于3000的行数为3,因此,3/12=0.25
第二行:小于等于4000的行数为5,因此,5/12=0.4166666666666667
rn2: 按照部门分组,dname='研发部'的行数为6,
第一行:研发部小于等于3000的行数为1,因此,1/6=0.16666666666666666
*/
PERCENT_RANK :
每行按照公式(rank-1) / (rows-1)进行计算。其中,rank为RANK()函数产生的序号,rows为当前窗
口的记录总行数
select
dname,
ename,
salary,
rank() over(partition by dname order by salary desc ) as rn,
percent_rank() over(partition by dname order by salary desc ) as rn2
from employee;
/*
rn2:
第一行: (1 - 1) / (6 - 1) = 0
第二行: (1 - 1) / (6 - 1) = 0
第三行: (3 - 1) / (6 - 1) = 0.4
*/
2.4 前后函数
返回位于当前行的前n行(LAG(expr,n))或后n行(LEAD(expr,n))的expr的值
用途:查询前1名同学的成绩和当前同学成绩的差值
-- lag的用法
select
dname,
ename,
hiredate,
salary,
lag(hiredate,1,'2000-01-01') over(partition by dname order by hiredate) as last_1_time,
lag(hiredate,2) over(partition by dname order by hiredate) as last_2_time
from employee;
/*
last_1_time: 指定了往上第1行的值,default为'2000-01-01'
第一行,往上1行为null,因此取默认值 '2000-01-01'
第二行,往上1行值为第一行值,2021-11-01
第三行,往上1行值为第二行值,2021-11-02
last_2_time: 指定了往上第2行的值,为指定默认值
第一行,往上2行为null
第二行,往上2行为null
第四行,往上2行为第二行值,2021-11-01
第七行,往上2行为第五行值,2021-11-02
*/
-- lead的用法
select
dname,
ename,
hiredate,
salary,
lead(hiredate,1,'2000-01-01') over(partition by dname order by hiredate) as last_1_time,
lead(hiredate,2) over(partition by dname order by hiredate) as last_2_time
from employee;
2.5 头尾函数
返回第一个(FIRST_VALUE(expr))或最后一个(LAST_VALUE(expr))expr的值
应用场景:截止到当前,按照日期排序查询第1个入职和最后1个入职员工的薪资
-- 注意, 如果不指定ORDER BY,则进行排序混乱,会出现错误的结果
select
dname,
ename,
hiredate,
salary,
first_value(salary) over(partition by dname order by hiredate) as first,
last_value(salary) over(partition by dname order by hiredate) as last
from employee;
2.6 其他函数
NTH_VALUE(expr,n):
返回窗口中第n个expr的值。expr可以是表达式,也可以是列名
应用场景:截止到当前薪资,显示每个员工的薪资中排名第2或者第3的薪资
-- 查询每个部门截止目前薪资排在第二和第三的员工信息
select
dname,
ename,
hiredate,
salary,
nth_value(salary,2) over(partition by dname order by hiredate) as second_score,
nth_value(salary,3) over(partition by dname order by hiredate) as third_score
from employee
NTILE:
将分区中的有序数据分为n个等级,记录等级数
应用场景:将每个部门员工按照入职日期分成3组
-- 根据入职日期将每个部门的员工分成3组
select
dname,
ename,
hiredate,
salary,
ntile(3) over(partition by dname order by hiredate ) as rn
from employee;
-- 取出每个部门的第一组员工
select
*
from
(
SELECT
dname,
ename,
hiredate,
salary,
NTILE(3) OVER(PARTITION BY dname ORDER BY hiredate ) AS rn
FROM employee
)t
where t.rn = 1;
文章来源地址https://www.toymoban.com/news/detail-443457.html
(日常美图时间)
文章来源:https://www.toymoban.com/news/detail-443457.html
到了这里,关于MySQL---控制流函数、窗口函数(序号函数、开窗聚合函数、分布函数、前后函数、头尾函数、其他函数)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!